Linear Algebra for Team-Based Inquiry Learning

2022 Edition

Steven Clontz Drew Lewis
University of South Alabama University of South Alabama

August 2, 2022

Section 4.2: Row Operations as Matrix Multiplication (MX2)

Activity 4.2.1 (~5 min)

Let \(A=\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]\text{.}\) Find a \(3 \times 3\) matrix \(B\) such that \(BA=A\text{,}\) that is,

\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] \end{equation*}
Check your guess using technology.

Definition 4.2.2

The identity matrix \(I_n\) (or just \(I\) when \(n\) is obvious from context) is the \(n \times n\) matrix

\begin{equation*} I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right]. \end{equation*}
It has a \(1\) on each diagonal element and a \(0\) in every other position.

Fact 4.2.3

For any square matrix \(A\text{,}\) \(IA=AI=A\text{:}\)

\begin{equation*} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] \end{equation*}

Activity 4.2.4 (~20 min)

Tweaking the identity matrix slightly allows us to write row operations in terms of matrix multiplication.

Part 1.

Create a matrix that doubles the third row of \(A\text{:}\)

\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{array}\right] \end{equation*}

Activity 4.2.4 (~20 min)

Tweaking the identity matrix slightly allows us to write row operations in terms of matrix multiplication.

Part 2.

Create a matrix that swaps the second and third rows of \(A\text{:}\)

\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 1 & 1 & -1 \\ 0 & 3 & 2 \end{array}\right] \end{equation*}

Activity 4.2.4 (~20 min)

Tweaking the identity matrix slightly allows us to write row operations in terms of matrix multiplication.

Part 3.

Create a matrix that adds \(5\) times the third row of \(A\) to the first row:

\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2+5(1) & 7+5(1) & -1+5(-1) \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] \end{equation*}

Fact 4.2.5

If \(R\) is the result of applying a row operation to \(I\text{,}\) then \(RA\) is the result of applying the same row operation to \(A\text{.}\)

  • Scaling a row: \(R= \left[\begin{array}{ccc} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\)

  • Swapping rows: \(R= \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\)

  • Adding a row multiple to another row: \(R= \left[\begin{array}{ccc} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\)

Such matrices can be chained together to emulate multiple row operations. In particular,

\begin{equation*} \RREF(A)=R_k\dots R_2R_1A \end{equation*}
for some sequence of matrices \(R_1,R_2,\dots,R_k\text{.}\)

Activity 4.2.6 (~10 min)

Consider the two row operations \(R_2\leftrightarrow R_3\) and \(R_1+R_2\to R_1\) applied as follows to show \(A\sim B\text{:}\)

\begin{align*} A = \left[\begin{array}{ccc} -1&4&5\\ 0&3&-1\\ 1&2&3\\ \end{array}\right] &\sim \left[\begin{array}{ccc} -1&4&5\\ 1&2&3\\ 0&3&-1\\ \end{array}\right]\\ &\sim \left[\begin{array}{ccc} -1+1&4+2&5+3\\ 1&2&3\\ 0&3&-1\\ \end{array}\right] = \left[\begin{array}{ccc} 0&6&8\\ 1&2&3\\ 0&3&-1\\ \end{array}\right] = B \end{align*}

Express these row operations as matrix multiplication by expressing \(B\) as the product of two matrices and \(A\text{:}\)

\begin{equation*} B = \left[\begin{array}{ccc} \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown \end{array}\right] \left[\begin{array}{ccc} \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown \end{array}\right] A \end{equation*}
Check your work using technology.