Linear Algebra for Team-Based Inquiry Learning

2022 Edition

Steven Clontz Drew Lewis
University of South Alabama University of South Alabama

August 2, 2022

Section 2.2: Linear Combinations (VS2)

Definition 2.2.1

A linear combination of a set of vectors \(\{\vec v_1,\vec v_2,\dots,\vec v_m\}\) is given by \(c_1\vec v_1+c_2\vec v_2+\dots+c_m\vec v_m\) for any choice of scalar multiples \(c_1,c_2,\dots,c_m\text{.}\)

For example, we can say \(\left[\begin{array}{c}3 \\0 \\ 5\end{array}\right]\) is a linear combination of the vectors \(\left[\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right]\) and \(\left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right]\) since

\begin{equation*} \left[\begin{array}{c} 3 \\ 0 \\ 5 \end{array}\right] = 2 \left[\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right] + 1\left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right]\text{.} \end{equation*}

Definition 2.2.2

The span of a set of vectors is the collection of all linear combinations of that set:

\begin{equation*} \vspan\{\vec v_1,\vec v_2,\dots,\vec v_m\} = \setBuilder{c_1\vec v_1+c_2\vec v_2+\dots+c_m\vec v_m}{ c_i\in\IR}\text{.} \end{equation*}

For example:

\begin{equation*} \vspan\setList { \left[\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right], \left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right] } = \setBuilder { a\left[\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right]+ b\left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right] }{ a,b\in\IR }\text{.} \end{equation*}

Activity 2.2.3 (~10 min)

Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right]\right\}\text{.}\)

Part 1.

Sketch \(1\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}1\\2\end{array}\right]\text{,}\) \(3\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}3\\6\end{array}\right]\text{,}\) \(0\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}0\\0\end{array}\right]\text{,}\) and \(-2\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}-2\\-4\end{array}\right]\) in the \(xy\) plane.

Activity 2.2.3 (~10 min)

Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right]\right\}\text{.}\)

Part 2.

Sketch a representation of all the vectors belonging to \(\vspan\setList{\left[\begin{array}{c}1\\2\end{array}\right]} = \setBuilder{a\left[\begin{array}{c}1\\2\end{array}\right]}{a\in\IR}\) in the \(xy\) plane.

Activity 2.2.4 (~10 min)

Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}\text{.}\)

Part 1.

Sketch the following linear combinations in the \(xy\) plane.

\begin{equation*} 1\left[\begin{array}{c}1\\2\end{array}\right]+ 0\left[\begin{array}{c}-1\\1\end{array}\right]\hspace{3em} 0\left[\begin{array}{c}1\\2\end{array}\right]+ 1\left[\begin{array}{c}-1\\1\end{array}\right]\hspace{3em} 1\left[\begin{array}{c}1\\2\end{array}\right]+ 1\left[\begin{array}{c}-1\\1\end{array}\right] \end{equation*}
\begin{equation*} -2\left[\begin{array}{c}1\\2\end{array}\right]+ 1\left[\begin{array}{c}-1\\1\end{array}\right]\hspace{3em} -1\left[\begin{array}{c}1\\2\end{array}\right]+ -2\left[\begin{array}{c}-1\\1\end{array}\right] \end{equation*}

Activity 2.2.4 (~10 min)

Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}\text{.}\)

Part 2.

Sketch a representation of all the vectors belonging to \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}=\setBuilder{a\left[\begin{array}{c}1\\2\end{array}\right]+b\left[\begin{array}{c}-1\\1\end{array}\right]}{a, b \in \IR}\) in the \(xy\) plane.

Activity 2.2.5 (~5 min)

Sketch a representation of all the vectors belonging to \(\vspan\left\{\left[\begin{array}{c}6\\-4\end{array}\right], \left[\begin{array}{c}-3\\2\end{array}\right]\right\}\) in the \(xy\) plane.

Activity 2.2.6 (~15 min)

The vector \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\) exactly when there exists a solution to the vector equation \(x_1\left[\begin{array}{c}1\\0\\-3\end{array}\right]+ x_2\left[\begin{array}{c}-1\\-3\\2\end{array}\right] =\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\text{.}\)

Part 1.

Reinterpret this vector equation as a system of linear equations.

Activity 2.2.6 (~15 min)

The vector \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\) exactly when there exists a solution to the vector equation \(x_1\left[\begin{array}{c}1\\0\\-3\end{array}\right]+ x_2\left[\begin{array}{c}-1\\-3\\2\end{array}\right] =\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\text{.}\)

Part 2.

Find its solution set, using technology to find \(\RREF\) of its corresponding augmented matrix.

Activity 2.2.6 (~15 min)

The vector \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\) exactly when there exists a solution to the vector equation \(x_1\left[\begin{array}{c}1\\0\\-3\end{array}\right]+ x_2\left[\begin{array}{c}-1\\-3\\2\end{array}\right] =\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\text{.}\)

Part 3.

Given this solution set, does \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\text{?}\)

Fact 2.2.7

A vector \(\vec b\) belongs to \(\vspan\{\vec v_1,\dots,\vec v_n\}\) if and only if the vector equation \(x_1 \vec{v}_1+\cdots+x_n \vec{v}_n=\vec{b}\) is consistent.

Observation 2.2.8

The following are all equivalent statements:

  • The vector \(\vec{b}\) belongs to \(\vspan\{\vec v_1,\dots,\vec v_n\}\text{.}\)

  • The vector equation \(x_1 \vec{v}_1+\cdots+x_n \vec{v}_n=\vec{b}\) is consistent.

  • The linear system corresponding to \(\left[\vec v_1\,\dots\,\vec v_n \,|\, \vec b\right]\) is consistent.

  • \(\RREF\left[\vec v_1\,\dots\,\vec v_n \,|\, \vec b\right]\) doesn't have a row \([0\,\cdots\,0\,|\,1]\) representing the contradiction \(0=1\text{.}\)

Activity 2.2.9 (~10 min)

Determine if \(\left[\begin{array}{c}3\\-2\\1 \\ 5\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3 \\ 2\end{array}\right], \left[\begin{array}{c}-1\\-3\\2 \\ 2\end{array}\right]\right\}\) by solving an appropriate vector equation.

Activity 2.2.10 (~5 min)

Determine if \(\left[\begin{array}{c}-1\\-9\\0\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\) by solving an appropriate vector equation.

Activity 2.2.11 (~10 min)

Does the third-degree polynomial \(3y^3-2y^2+y+5\) in \(\P_3\) belong to \(\vspan\{y^3-3y+2,-y^3-3y^2+2y+2\}\text{?}\)

Part 1.

Reinterpret this question as a question about the solution(s) of a polynomial equation:

\begin{equation*} x_1(\cdots\unknown\cdots)+x_2(\cdots\unknown\cdots)= (\cdots\unknown\cdots) \end{equation*}

Activity 2.2.11 (~10 min)

Does the third-degree polynomial \(3y^3-2y^2+y+5\) in \(\P_3\) belong to \(\vspan\{y^3-3y+2,-y^3-3y^2+2y+2\}\text{?}\)

Part 2.

Write a Euclidean vector equation that has the same solution set:

\begin{equation*} x_1\left[\begin{array}{c}\unknown\\\unknown\\\unknown\\\unknown\end{array}\right]+ x_2\left[\begin{array}{c}\unknown\\\unknown\\\unknown\\\unknown\end{array}\right]= \left[\begin{array}{c}\unknown\\\unknown\\\unknown\\\unknown\end{array}\right] \end{equation*}

Activity 2.2.11 (~10 min)

Does the third-degree polynomial \(3y^3-2y^2+y+5\) in \(\P_3\) belong to \(\vspan\{y^3-3y+2,-y^3-3y^2+2y+2\}\text{?}\)

Part 3.

Answer this equivalent question, and use its solution to answer the original question.

Activity 2.2.12 (~5 min)

Does the polynomial \(x^2+x+1\) belong to \(\vspan\{x^2-x,x+1, x^2-1\}\text{?}\)

Activity 2.2.13 (~5 min)

Does the matrix \(\left[\begin{array}{cc}3&-2\\1&5\end{array}\right]\) belong to \(\vspan\left\{\left[\begin{array}{cc}1&0\\-3&2\end{array}\right], \left[\begin{array}{cc}-1&-3\\2&2\end{array}\right]\right\}\text{?}\)

Part 1.

Reinterpret this question as a question about the solution(s) of a matrix equation.

Activity 2.2.13 (~5 min)

Does the matrix \(\left[\begin{array}{cc}3&-2\\1&5\end{array}\right]\) belong to \(\vspan\left\{\left[\begin{array}{cc}1&0\\-3&2\end{array}\right], \left[\begin{array}{cc}-1&-3\\2&2\end{array}\right]\right\}\text{?}\)

Part 2.

Answer this equivalent question, and use its solution to answer the original question.