Any single non-zero vector/number x in \IR^1 spans \IR^1\text{,} since \IR^1=\setBuilder{cx}{c\in\IR}\text{.}
Figure1.An \IR^1 vector
Activity 2.3.2 (~5 min)
How many vectors are required to span \IR^2\text{?} Sketch a drawing in the xy plane to support your answer.
Figure2.The xy plane \IR^2
\displaystyle 1
\displaystyle 2
\displaystyle 3
\displaystyle 4
Infinitely Many
Activity 2.3.3 (~5 min)
How many vectors are required to span \IR^3\text{?}
Figure3.\IR^3 space
\displaystyle 1
\displaystyle 2
\displaystyle 3
\displaystyle 4
Infinitely Many
Fact 2.3.4
At least n vectors are required to span \IR^n\text{.}
Figure4.Failed attempts to span \IR^n by <n vectors
Activity 2.3.5 (~15 min)
Choose any vector \left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right] in \IR^3 that is not in \vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right],
\left[\begin{array}{c}-2\\0\\1\end{array}\right]\right\} by using technology to verify that \RREF
\left[\begin{array}{cc|c}1&-2&\unknown\\-1&0&\unknown\\0&1&\unknown\end{array}\right]
=
\left[\begin{array}{cc|c}1&0&0\\0&1&0\\0&0&1\end{array}\right]
\text{.} (Why does this work?)
Fact 2.3.6
The set \{\vec v_1,\dots,\vec v_m\} fails to span all of \IR^n exactly when the vector equation
\begin{equation*}
\Rightarrow
\left[\begin{array}{cc|c}1&-2&a\\-1&0&b\\0&1&c\end{array}\right]\sim
\left[\begin{array}{cc|c}1&0&0\\0&1&0\\0&0&1\end{array}\right]
\text{for some choice of vector} \left[\begin{array}{c} a \\ b \\ c \end{array}\right] \text{.}
\end{equation*}
Activity 2.3.7 (~5 min)
Consider the set of vectors S=\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}1\\-4\\3\\0\end{array}\right],
\left[\begin{array}{c}1\\7\\-3\\-1\end{array}\right],
\left[\begin{array}{c}0\\3\\5\\7\end{array}\right],
\left[\begin{array}{c}3\\13\\7\\16\end{array}\right]
\right\} and the question “Does \IR^4=\vspan S\text{?}”
Part 1.
Rewrite this question in terms of the solutions to a vector equation.
Activity 2.3.7 (~5 min)
Consider the set of vectors S=\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}1\\-4\\3\\0\end{array}\right],
\left[\begin{array}{c}1\\7\\-3\\-1\end{array}\right],
\left[\begin{array}{c}0\\3\\5\\7\end{array}\right],
\left[\begin{array}{c}3\\13\\7\\16\end{array}\right]
\right\} and the question “Does \IR^4=\vspan S\text{?}”
Part 2.
Answer your new question, and use this to answer the original question.
and the question “Does M_{2,2} = \vspan S\text{?}”
Part 2.
Answer your new question, and use this to answer the original question.
Activity 2.3.10 (~5 min)
Let \vec{v}_1, \vec{v}_2, \vec{v}_3 \in \IR^7 be three vectors, and suppose \vec{w} is another vector with \vec{w} \in \vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\}\text{.} What can you conclude about \vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{?}
\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} is larger than \vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}
\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} is smaller than \vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}
Linear Algebra for Team-Based Inquiry Learning 2022 Edition Steven Clontz Drew Lewis University of South Alabama University of South Alabama August 2, 2022