\(\newcommand{\circledNumber}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Linear Algebra for Team-Based Inquiry Learning
2022 Edition
Steven Clontz
Drew Lewis
University of South Alabama
University of South Alabama
August 2, 2022
Section 2.7: Subspace Basis and Dimension (VS7) Observation 2.7.1
Recall from section Section 2.4 Subspaces (VS4) that a subspace of a vector space is a subset that is itself a vector space.
One easy way to construct a subspace is to take the span of set, but a linearly dependent set contains “redundant” vectors. For example, only two of the three vectors in the following image are needed to span the planar subspace.
Figure 1. A linearly dependent set of three vectors
Activity 2.7.2 (~10 min)
Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\text{.}\)
Part 1.
Mark the part of \(\RREF\left[\begin{array}{cccc}
2&2&2&1\\
3&0&-3&5\\
0&1&2&-1\\
1&-1&-3&0
\end{array}\right]\) that shows that \(W\) 's spanning set is linearly dependent.
Activity 2.7.2 (~10 min)
Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\text{.}\)
Part 2.
Find a basis for \(W\) by removing a vector from its spanning set to make it linearly independent.
Fact 2.7.3
Let \(S=\{\vec v_1,\dots,\vec v_m\}\text{.}\) The easiest basis describing \(\vspan S\) is the set of vectors in \(S\) given by the pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\)
Put another way, to compute a basis for the subspace \(\vspan S\text{,}\) simply remove the vectors corresponding to the non-pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\) For example, since
\begin{equation*}
\RREF
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -2 \\
-3 & 1 & -2
\end{array}\right]
=
\left[\begin{array}{ccc}
\circledNumber{1} & 0 & 1 \\
0 & \circledNumber{1} & 1 \\
0 & 0 & 0
\end{array}\right]
\end{equation*}
the subspace
\(W=\vspan\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right],
\left[\begin{array}{c}3\\-2\\-2\end{array}\right]
}\) has
\(\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right]
}\) as a basis.
Activity 2.7.4 (~10 min)
Let \(W\) be the subspace of \(\IR^4\) given by
\begin{equation*}
W = \vspan \left\{
\left[\begin{array}{c} 1 \\ 3 \\ 1 \\ -1 \end{array}\right],
\left[\begin{array}{c} 2 \\ -1 \\ 1 \\ 2 \end{array}\right],
\left[\begin{array}{c} 4 \\ 5 \\ 3 \\ 0 \end{array}\right],
\left[\begin{array}{c} 3 \\ 2 \\ 2 \\ 1 \end{array}\right]
\right\} \text{.}
\end{equation*}
Find a basis for
\(W\text{.}\)
Activity 2.7.5 (~10 min)
Let \(W\) be the subspace of \(\P_3\) given by
\begin{equation*}
W = \vspan \left\{x^3+3x^2+x-1, 2x^3-x^2+x+2, 4x^3+5x^2+3x, 3x^3+2x^2+2x+1 \right\}
\end{equation*}
Find a basis for
\(W\text{.}\)
Activity 2.7.6 (~10 min)
Let \(W\) be the subspace of \(M_{2,2}\) given by
\begin{equation*}
W = \vspan \left\{
\left[\begin{array}{cc} 1 & 3 \\ 1 & -1 \end{array}\right],
\left[\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array}\right],
\left[\begin{array}{cc} 4 & 5 \\ 3 & 0 \end{array}\right],
\left[\begin{array}{cc} 3 & 2 \\ 2 & 1 \end{array}\right]
\right\}.
\end{equation*}
Find a basis for
\(W\text{.}\)
Activity 2.7.7 (~10 min)
Let
\begin{equation*}
S=\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\end{equation*}
and
\begin{equation*}
T=\left\{
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right],
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right]
\right\}\text{.}
\end{equation*}
Part 1.
Find a basis for \(\vspan S\text{.}\)
Activity 2.7.7 (~10 min)
Let
\begin{equation*}
S=\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\end{equation*}
and
\begin{equation*}
T=\left\{
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right],
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right]
\right\}\text{.}
\end{equation*}
Part 2.
Find a basis for \(\vspan T\text{.}\)
Observation 2.7.8
Even though we found different bases for them, \(\vspan S\) and \(\vspan T\) are exactly the same subspace of \(\IR^4\text{,}\) since
\begin{equation*}
S=\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
=
\left\{
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right],
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right]
\right\}=T\text{.}
\end{equation*}
Fact 2.7.9
Any non-trivial real vector space has infinitely-many different bases, but all the bases for a given vector space are exactly the same size.
For example,
\begin{equation*}
\setList{\vec e_1,\vec e_2,\vec e_3}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\1\\0\end{array}\right],
\left[\begin{array}{c}1\\1\\1\end{array}\right]
}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right],
\left[\begin{array}{c}3\\-2\\5\end{array}\right]
}
\end{equation*}
are all valid bases for
\(\IR^3\text{,}\) and they all contain three vectors.
Definition 2.7.10
The dimension of a vector space is equal to the size of any basis for the vector space.
As you'd expect, \(\IR^n\) has dimension \(n\text{.}\) For example, \(\IR^3\) has dimension \(3\) because any basis for \(\IR^3\) such as
\begin{equation*}
\setList{\vec e_1,\vec e_2,\vec e_3}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\1\\0\end{array}\right],
\left[\begin{array}{c}1\\1\\1\end{array}\right]
}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right],
\left[\begin{array}{c}3\\-2\\5\end{array}\right]
}
\end{equation*}
contains exactly three vectors.
Activity 2.7.11 (~10 min)
Find the dimension of each subspace of \(\IR^4\) by finding \(\RREF\) for each corresponding matrix.
Part 1.
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}2\\0\\0\\3\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right],
\left[\begin{array}{c}-3\\0\\1\\3\end{array}\right]
\right\}
\end{equation*}
Activity 2.7.11 (~10 min)
Find the dimension of each subspace of \(\IR^4\) by finding \(\RREF\) for each corresponding matrix.
Part 2.
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}2\\0\\0\\3\end{array}\right],
\left[\begin{array}{c}3\\13\\7\\16\end{array}\right],
\left[\begin{array}{c}-1\\10\\7\\14\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right]
\right\}
\end{equation*}
Activity 2.7.11 (~10 min)
Find the dimension of each subspace of \(\IR^4\) by finding \(\RREF\) for each corresponding matrix.
Part 3.
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right],
\left[\begin{array}{c}-3\\0\\1\\3\end{array}\right],
\left[\begin{array}{c}3\\6\\1\\5\end{array}\right]
\right\}
\end{equation*}
Activity 2.7.11 (~10 min)
Find the dimension of each subspace of \(\IR^4\) by finding \(\RREF\) for each corresponding matrix.
Part 4.
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}5\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}-2\\1\\0\\3\end{array}\right],
\left[\begin{array}{c}4\\5\\1\\3\end{array}\right]
\right\}
\end{equation*}