\(\newcommand{\circledNumber}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Linear Algebra for Team-Based Inquiry Learning
2022 Edition
Steven Clontz |
Drew Lewis |
University of South Alabama |
University of South Alabama |
|
|
August 2, 2022
Section 2.8: Polynomial and Matrix Spaces (VS8)
Fact 2.8.1
Every vector space with finite dimension, that is, every vector space \(V\) with a basis of the form \(\{\vec v_1,\vec v_2,\dots,\vec v_n\}\) is said to be isomorphic to a Euclidean space \(\IR^n\text{,}\) since there exists a natural correspondance between vectors in \(V\) and vectors in \(\IR^n\text{:}\)
\begin{equation*}
c_1\vec v_1+c_2\vec v_2+\dots+c_n\vec v_n
\leftrightarrow
\left[\begin{array}{c}
c_1\\c_2\\\vdots\\c_n
\end{array}\right]
\end{equation*}
Observation 2.8.2
We've already been taking advantage of the previous fact by converting polynomials and matrices into Euclidean vectors. Since \(\P_3\) and \(M_{2,2}\) are both four-dimensional:
\begin{equation*}
4x^3+0x^2-1x+5
\leftrightarrow
\left[\begin{array}{c}
4\\0\\-1\\5
\end{array}\right]
\leftrightarrow
\left[\begin{array}{cc}
4&0\\-1&5
\end{array}\right]
\end{equation*}
Activity 2.8.3 (~5 min)
Suppose \(W\) is a subspace of \(\P_8\text{,}\) and you know that the set \(\{ x^3+x, x^2+1, x^4-x \}\) is a linearly independent subset of \(W\text{.}\) What can you conclude about \(W\text{?}\)
The dimension of \(W\) is 3 or less.
The dimension of \(W\) is exactly 3.
The dimension of \(W\) is 3 or more.
Activity 2.8.4 (~5 min)
Suppose \(W\) is a subspace of \(\P_8\text{,}\) and you know that \(W\) is spanned by the six vectors
\begin{equation*}
\{ x^4-x,x^3+x,x^3+x+1,x^4+2x,x^3,2x+1\}.
\end{equation*}
What can you conclude about
\(W\text{?}\)
The dimension of \(W\) is 6 or less.
The dimension of \(W\) is exactly 6.
The dimension of \(W\) is 6 or more.
Observation 2.8.5
The space of polynomials \(\P\) (of any degree) has the basis \(\{1,x,x^2,x^3,\dots\}\text{,}\) so it is a natural example of an infinite-dimensional vector space.
Since \(\P\) and other infinite-dimensional spaces cannot be treated as an isomorphic finite-dimensional Euclidean space \(\IR^n\text{,}\) vectors in such spaces cannot be studied by converting them into Euclidean vectors. Fortunately, most of the examples we will be interested in for this course will be finite-dimensional.