Linear Algebra for Team-Based Inquiry Learning

2023 Edition

Steven Clontz Drew Lewis
University of South Alabama

August 24, 2023

Section 3.5: Vector Spaces (AT5)

Observation 3.5.1

Consider the following applications of properites of the real numbers \(\mathbb R\text{:}\)

  1. \(1+(2+3)=(1+2)+3\text{.}\)

  2. \(7+4=4+7\text{.}\)

  3. There exists some \(\unknown\) where \(5+\unknown=5\text{.}\)

  4. There exists some \(\unknown\) where \(9+\unknown=0\text{.}\)

  5. \(\frac{1}{2}(1+7)\) is the only number that is equally distant from \(1\) and \(7\text{.}\)

Activity 3.5.1 (~5 min)

Which of the following properites of \(\IR^2\) Euclidean vectors is NOT true?

  1. \(\left[\begin{array}{c} x_1\\x_2\end{array}\right] +\left(\left[\begin{array}{c} y_1\\y_2\end{array}\right] +\left[\begin{array}{c} z_1\\z_2\end{array}\right]\right)= \left(\left[\begin{array}{c} x_1\\x_2\end{array}\right] +\left[\begin{array}{c} y_1\\y_2\end{array}\right]\right) +\left[\begin{array}{c} z_1\\z_2\end{array}\right]\text{.}\)

  2. \(\left[\begin{array}{c}x_1\\x_2\end{array}\right] + \left[\begin{array}{c}y_1\\y_2\end{array}\right] = \left[\begin{array}{c}y_1\\y_2\end{array}\right] + \left[\begin{array}{c}x_1\\x_2\end{array}\right]\text{.}\)

  3. There exists some \(\left[\begin{array}{c}\unknown\\\unknown\end{array}\right]\) where \(\left[\begin{array}{c}x_1\\x_2\end{array}\right] +\left[\begin{array}{c}\unknown\\\unknown\end{array}\right] =\left[\begin{array}{c}x_1\\x_2\end{array}\right]\text{.}\)

  4. There exists some \(\left[\begin{array}{c}\unknown\\\unknown\end{array}\right]\) where \(\left[\begin{array}{c}x_1\\x_2\end{array}\right]+ \left[\begin{array}{c}\unknown\\\unknown\end{array}\right]= \left[\begin{array}{c}0\\0\end{array}\right]\text{.}\)

  5. \(\displaystyle\frac{1}{2}\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right] + \left[\begin{array}{c}y_1\\y_2\end{array}\right] \right)\) is the only vector whose endpoint is equally distant from the endpoints of \(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\) and \(\left[\begin{array}{c}y_1\\y_2\end{array}\right]\text{.}\)

Observation 3.5.2

Consider the following applications of properites of the real numbers \(\mathbb R\text{:}\)

  1. \(3(2(7))=(3\cdot 2)(7)\text{.}\)

  2. \(1(19)=19\text{.}\)

  3. There exists some \(\unknown\) such that \(\unknown \cdot 4= 9\text{.}\)

  4. \(3\cdot (2+8)=3\cdot 2+3\cdot 8\text{.}\)

  5. \((2+7)\cdot 4=2\cdot 4+7\cdot 4\text{.}\)

Activity 3.5.2 (~5 min)

Which of the following properites of \(\IR^2\) Euclidean vectors is NOT true?

  1. \(a\left(b\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right)= ab\left[\begin{array}{c}x_1\\x_2\end{array}\right]\text{.}\)

  2. \(1\left[\begin{array}{c}x_1\\x_2\end{array}\right]= \left[\begin{array}{c}x_1\\x_2\end{array}\right]\text{.}\)

  3. There exists some \(\unknown\) such that \(\unknown\left[\begin{array}{c}x_1\\x_2\end{array}\right]= \left[\begin{array}{c}y_1\\y_2\end{array}\right]\text{.}\)

  4. \(a(\vec u+\vec v)=a\vec u+a\vec v\text{.}\)

  5. \((a+b)\vec v=a\vec v+b\vec v\text{.}\)

Fact 3.5.3

Every Euclidean vector space \(\mathbb R^n\) satisfies the following properties, where \(\vec u,\vec v,\vec w\) are Euclidean vectors and \(a,b\) are scalars.

  1. Vector addition is associative: \(\vec u + (\vec v + \vec w)= (\vec u + \vec v) + \vec w\text{.}\)

  2. Vector addition is commutative: \(\vec u + \vec v= \vec v + \vec u\text{.}\)

  3. An additive identity exists: There exists some \(\vec z\) where \(\vec v + \vec z=\vec v\text{.}\)

  4. Additive inverses exist: There exists some \(-\vec v\) where \(\vec v + (-\vec v)=\vec z\text{.}\)

  5. Scalar multiplication is associative: \(a (b \vec v)=(ab) \vec v\text{.}\)

  6. 1 is a multiplicative identity: \(1 \vec v=\vec v\text{.}\)

  7. Scalar multiplication distributes over vector addition: \(a (\vec u + \vec v)=(a \vec u) + (a \vec v)\text{.}\)

  8. Scalar multiplication distributes over scalar addition: \((a+ b) \vec v=(a \vec v) + (b \vec v)\text{.}\)

Definition 3.5.4

A vector space \(V\) is any set of mathematical objects, called vectors, and a set of numbers, called scalars, with associated addition \(\oplus\) and scalar multiplication \(\odot\) operations that satisfy the following properties. Let \(\vec u,\vec v,\vec w\) be vectors belonging to \(V\text{,}\) and let \(a,b\) be scalars.

  1. Vector addition is associative: \(\vec u\oplus (\vec v\oplus \vec w)= (\vec u\oplus \vec v)\oplus \vec w\text{.}\)

  2. Vector addition is commutative: \(\vec u\oplus \vec v= \vec v\oplus \vec u\text{.}\)

  3. An additive identity exists: There exists some \(\vec z\) where \(\vec v\oplus \vec z=\vec v\text{.}\)

  4. Additive inverses exist: There exists some \(-\vec v\) where \(\vec v\oplus (-\vec v)=\vec z\text{.}\)

  5. Scalar multiplication is associative: \(a\odot(b\odot\vec v)=(ab)\odot\vec v\text{.}\)

  6. 1 is a multiplicative identity: \(1\odot\vec v=\vec v\text{.}\)

  7. Scalar multiplication distributes over vector addition: \(a\odot(\vec u\oplus \vec v)=(a\odot\vec u)\oplus(a\odot\vec v)\text{.}\)

  8. Scalar multiplication distributes over scalar addition: \((a+ b)\odot\vec v=(a\odot\vec v)\oplus(b\odot \vec v)\text{.}\)

Remark 3.5.5

Consider the set \(\IC\) of complex numbers with the usual defintion for addition: \((a+b\mathbf i)\oplus(c+d\mathbf i)=(a+c)+(b+d)\mathbf i\text{.}\)

Let \(\vec u=a+b\mathbf{i}\text{,}\) \(\vec v=c+d\mathbf{i}\text{,}\) and \(\vec w=e+f\mathbf{i}\text{.}\) Then

\begin{align*} \vec u\oplus(\vec v \oplus \vec w) &= (a+b\mathbf{i})\oplus((c+d\mathbf{i})\oplus(e+f\mathbf{i}))\\ &= (a+b\mathbf{i})\oplus((c+e)+(d+f)\mathbf{i})\\ &=(a+c+e)+(b+d+f)\mathbf{i} \end{align*}
\begin{align*} (\vec u\oplus\vec v) \oplus \vec w &= ((a+b\mathbf{i})\oplus(c+d\mathbf{i}))\oplus(e+f\mathbf{i})\\ &=((a+c)+(b+d)\mathbf{i})\oplus(e+f\mathbf{i})\\ &=(a+c+e)+(b+d+f)\mathbf{i} \end{align*}

This proves that complex addition is associative: \(\vec u\oplus(\vec v \oplus \vec w) = (\vec u\oplus\vec v) \oplus \vec w\text{.}\) The seven other vector space properties may also be verified, so \(\IC\) is an example of a non-Euclidean vector space.

Remark 3.5.6

The following sets are just a few examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

  • \(\IR^n\text{:}\) Euclidean vectors with \(n\) components.

  • \(\IC\text{:}\) Complex numbers.

  • \(M_{m,n}\text{:}\) Matrices of real numbers with \(m\) rows and \(n\) columns.

  • \(\P_n\text{:}\) Polynomials of degree \(n\) or less.

  • \(\P\text{:}\) Polynomials of any degree.

  • \(C(\IR)\text{:}\) Real-valued continuous functions.

Activity 3.5.3 (~5 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\text{.}\)

Which of the following vectors is not in \(V\text{?}\)

  1. \(\displaystyle (0, 0)\)

  2. \(\displaystyle (1, 2)\)

  3. \(\displaystyle (2, 4)\)

  4. \(\displaystyle (3, 8)\)

Activity 3.5.4 (~5 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\) with the operation \(\oplus\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \text{.} \end{equation*}

Let \(\vec u, \vec v\) be in \(V\) with \(\vec u=(1, 2)\) and \(\vec v=(2, 4)\text{.}\) Using the operations defined for \(V\text{,}\) which of the following is \(\vec u\oplus\vec v\text{?}\)

  1. \(\displaystyle (2, 6)\)

  2. \(\displaystyle (2, 8)\)

  3. \(\displaystyle (3, 6)\)

  4. \(\displaystyle (3, 8)\)

Activity 3.5.5 (~10 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\) with operations \(\oplus,\odot\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \hspace{3em} c\odot (x,y)=(cx,y^c)\text{.} \end{equation*}

Let \(a=2, b=-3\) be scalars and \(\vec u=(1,2) \in V\text{.}\)

Part 1.

Verify that

\begin{equation*} (a+b)\odot \vec u=\left(-1,\frac{1}{2}\right)\text{.} \end{equation*}

Activity 3.5.5 (~10 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\) with operations \(\oplus,\odot\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \hspace{3em} c\odot (x,y)=(cx,y^c)\text{.} \end{equation*}

Let \(a=2, b=-3\) be scalars and \(\vec u=(1,2) \in V\text{.}\)

Part 2.

Compute the value of

\begin{equation*} \left(a\odot \vec u\right)\oplus \left(b\odot \vec u\right)\text{.} \end{equation*}

Activity 3.5.6 (~10 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\) with operations \(\oplus,\odot\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \hspace{3em} c\odot (x,y)=(cx,y^c)\text{.} \end{equation*}

Let \(a, b\) be unspecified scalars in \(\mathbb R\) and \(\vec u = (x,y)\) be an unspecified vector in \(V\text{.}\)

Part 1.

Show that both sides of the equation

\begin{equation*} (a+b)\odot (x,y)= \left(a\odot (x,y)\right)\oplus \left(b\odot (x,y)\right) \end{equation*}
simplify to the expression \((ax+bx,y^ay^b)\text{.}\)

Activity 3.5.6 (~10 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\) with operations \(\oplus,\odot\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \hspace{3em} c\odot (x,y)=(cx,y^c)\text{.} \end{equation*}

Let \(a, b\) be unspecified scalars in \(\mathbb R\) and \(\vec u = (x,y)\) be an unspecified vector in \(V\text{.}\)

Part 2.

Show that \(V\) contains an additive identity element \(\vec{z}=(\unknown,\unknown)\) satisfying

\begin{equation*} (x,y)\oplus(\unknown,\unknown)=(x,y) \end{equation*}
for all \((x,y)\in V\text{.}\)

That is, pick appropriate values for \(\vec{z}=(\unknown,\unknown)\) and then simplify \((x,y)\oplus(\unknown,\unknown)\) into just \((x,y)\text{.}\)

Activity 3.5.6 (~10 min)

Consider the set \(V=\setBuilder{(x,y)}{y=2^x}\) with operations \(\oplus,\odot\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \hspace{3em} c\odot (x,y)=(cx,y^c)\text{.} \end{equation*}

Let \(a, b\) be unspecified scalars in \(\mathbb R\) and \(\vec u = (x,y)\) be an unspecified vector in \(V\text{.}\)

Part 3.

Is \(V\) a vector space?

  1. Yes

  2. No

  3. More work is required

Remark 3.5.7

It turns out \(V=\setBuilder{(x,y)}{y=2^x}\) with operations \(\oplus,\odot\) defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1y_2) \hspace{3em} c\odot (x,y)=(cx,y^c) \end{equation*}
satisifes all eight properties from Definition 3.5.4 .

Thus, \(V\) is a vector space.

Activity 3.5.7 (~15 min)

Let \(V=\setBuilder{(x,y)}{x,y\in\IR}\) have operations defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+y_1+x_2+y_2,x_1^2+x_2^2) \end{equation*}
\begin{equation*} c\odot (x,y)=(x^c,y+c-1)\text{.} \end{equation*}

Part 1.

Show that \(1\) is the scalar multiplication identity element by simplifying \(1\odot(x,y)\) to \((x,y)\text{.}\)

Activity 3.5.7 (~15 min)

Let \(V=\setBuilder{(x,y)}{x,y\in\IR}\) have operations defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+y_1+x_2+y_2,x_1^2+x_2^2) \end{equation*}
\begin{equation*} c\odot (x,y)=(x^c,y+c-1)\text{.} \end{equation*}

Part 2.

Show that \(V\) does not have an additive identity element \(\vec z=(z,w)\) by showing that \((0,-1)\oplus(z,w)\not=(0,-1)\) no matter what the values of \(z,w\) are.

Activity 3.5.7 (~15 min)

Let \(V=\setBuilder{(x,y)}{x,y\in\IR}\) have operations defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+y_1+x_2+y_2,x_1^2+x_2^2) \end{equation*}
\begin{equation*} c\odot (x,y)=(x^c,y+c-1)\text{.} \end{equation*}

Part 3.

Is \(V\) a vector space?

  1. Yes

  2. No

  3. More work is required

Activity 3.5.8 (~15 min)

Let \(V=\setBuilder{(x,y)}{x,y\in\IR}\) have operations defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1+3y_2) \hspace{3em} c\odot (x,y)=(cx,cy) . \end{equation*}

Part 1.

Show that scalar multiplication distributes over vector addition, i.e.

\begin{equation*} c \odot \left( (x_1,y_1) \oplus (x_2,y_2) \right) = c\odot (x_1,y_1) \oplus c\odot (x_2,y_2) \end{equation*}
for all \(c\in \IR,\, (x_1,y_1),(x_2,y_2) \in V\text{.}\)

Activity 3.5.8 (~15 min)

Let \(V=\setBuilder{(x,y)}{x,y\in\IR}\) have operations defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1+3y_2) \hspace{3em} c\odot (x,y)=(cx,cy) . \end{equation*}

Part 2.

Show that vector addition is not associative, i.e.

\begin{equation*} (x_1,y_1) \oplus \left((x_2,y_2) \oplus (x_3,y_3)\right) \neq \left((x_1,y_1)\oplus (x_2,y_2)\right) \oplus (x_3,y_3) \end{equation*}
for some vectors \((x_1,y_1), (x_2,y_2), (x_3,y_3) \in V\text{.}\)

Activity 3.5.8 (~15 min)

Let \(V=\setBuilder{(x,y)}{x,y\in\IR}\) have operations defined by

\begin{equation*} (x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1+3y_2) \hspace{3em} c\odot (x,y)=(cx,cy) . \end{equation*}

Part 3.

Is \(V\) a vector space?

  1. Yes

  2. No

  3. More work is required