Linear Algebra for Team-Based Inquiry Learning
2023 Edition
Steven Clontz | Drew Lewis |
---|---|
University of South Alabama | |
August 24, 2023
Section 2.1: Linear Combinations (EV1)
Definition 2.1.2
A linear combination of a set of vectors \(\{\vec v_1,\vec v_2,\dots,\vec v_m\}\) is given by \(c_1\vec v_1+c_2\vec v_2+\dots+c_m\vec v_m\) for any choice of scalar multiples \(c_1,c_2,\dots,c_m\text{.}\)
For example, we can say \(\left[\begin{array}{c}3 \\0 \\ 5\end{array}\right]\) is a linear combination of the vectors \(\left[\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right]\) and \(\left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right]\) since
Definition 2.1.3
The span of a set of vectors is the collection of all linear combinations of that set:
For example:
Remark 2.1.4
It is important to remember that
For example,
Activity 2.1.1 (~10 min)
Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right]\right\}\text{.}\)
Part 1.
Sketch the four Euclidean vectors
Activity 2.1.1 (~10 min)
Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right]\right\}\text{.}\)
Part 2.
Sketch a representation of all the vectors belonging to
- A line
- A plane
- A parabola
- A circle
Activity 2.1.2 (~10 min)
Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}\text{.}\)
Part 1.
Sketch the following five Euclidean vectors in the \(xy\) plane.
Activity 2.1.2 (~10 min)
Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}\text{.}\)
Part 2.
Sketch a representation of all the vectors belonging to
- A line
- A plane
- A parabola
- A circle
Activity 2.1.3 (~5 min)
Sketch a representation of all the vectors belonging to \(\vspan\left\{\left[\begin{array}{c}6\\-4\end{array}\right], \left[\begin{array}{c}-3\\2\end{array}\right]\right\}\) in the \(xy\) plane. What best describes this sketch?
- A line
- A plane
- A parabola
- A cube
Activity 2.1.4 (~15 min)
Consider the following questions to discover whether a Euclidean vector belongs to a span.
Part 1.
The Euclidean vector \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\) exactly when there exists a solution to which of these vector equations?
- \(\displaystyle x_1\left[\begin{array}{c}-1\\-6\\1\end{array}\right]+ x_2\left[\begin{array}{c}1\\0\\-3\end{array}\right] =\left[\begin{array}{c}-1\\-3\\2\end{array}\right]\)
- \(\displaystyle x_1\left[\begin{array}{c}1\\0\\-3\end{array}\right]+ x_2\left[\begin{array}{c}-1\\-3\\2\end{array}\right] =\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\)
- \(\displaystyle x_1\left[\begin{array}{c}-1\\-3\\2\end{array}\right]+ x_2\left[\begin{array}{c}-1\\-6\\1\end{array}\right]+ x_3\left[\begin{array}{c}1\\0\\-3\end{array}\right]=0\)
Activity 2.1.4 (~15 min)
Consider the following questions to discover whether a Euclidean vector belongs to a span.
Part 2.
Use technology to find \(\RREF\) of the corresponding augmented matrix, and then use that matrix to find the solution set of the vector equation.
Activity 2.1.4 (~15 min)
Consider the following questions to discover whether a Euclidean vector belongs to a span.
Part 3.
Given this solution set, does \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\text{?}\)
Observation 2.1.5
The following are all equivalent statements:
The vector \(\vec{b}\) belongs to \(\vspan\{\vec v_1,\dots,\vec v_n\}\text{.}\)
The vector \(\vec{b}\) is a linear combination of the vectors \(\vec v_1,\dots,\vec v_n\text{.}\)
The vector equation \(x_1 \vec{v}_1+\cdots+x_n \vec{v}_n=\vec{b}\) is consistent.
The linear system corresponding to \(\left[\vec v_1\,\dots\,\vec v_n \,|\, \vec b\right]\) is consistent.
\(\RREF\left[\vec v_1\,\dots\,\vec v_n \,|\, \vec b\right]\) doesn’t have a row \([0\,\cdots\,0\,|\,1]\) representing the contradiction \(0=1\text{.}\)
Activity 2.1.5 (~10 min)
Consider this claim about a vector equation:
\(\left[\begin{array}{c} -6 \\ 2 \\ -6 \end{array}\right]\)is a linear combination of the vectors \(\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} 3 \\ 0 \\ 6 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 4 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ 1 \\ -5 \end{array}\right]\text{.}\)
Part 1.
Write a statement involving the solutions of a vector equation that’s equivalent to this claim.
Activity 2.1.5 (~10 min)
Consider this claim about a vector equation:
\(\left[\begin{array}{c} -6 \\ 2 \\ -6 \end{array}\right]\)is a linear combination of the vectors \(\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} 3 \\ 0 \\ 6 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 4 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ 1 \\ -5 \end{array}\right]\text{.}\)
Part 2.
Explain why the statement you wrote is true.
Activity 2.1.5 (~10 min)
Consider this claim about a vector equation:
\(\left[\begin{array}{c} -6 \\ 2 \\ -6 \end{array}\right]\)is a linear combination of the vectors \(\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} 3 \\ 0 \\ 6 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 4 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ 1 \\ -5 \end{array}\right]\text{.}\)
Part 3.
Since your statement was true, use the solution set to describe a linear combination of \(\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} 3 \\ 0 \\ 6 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 4 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ 1 \\ -5 \end{array}\right]\) that equals \(\left[\begin{array}{c} -5 \\ -1 \\ -7 \end{array}\right]\text{.}\)
Activity 2.1.6 (~10 min)
Consider this claim about a vector equation:
\(\left[\begin{array}{c} -5 \\ -1 \\ -7 \end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} 3 \\ 0 \\ 6 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 4 \end{array}\right] , \left[\begin{array}{c} -4 \\ 1 \\ -5 \end{array}\right]\right\}\text{.}\)
Part 1.
Write a statement involving the solutions of a vector equation that’s equivalent to this claim.
Activity 2.1.6 (~10 min)
Consider this claim about a vector equation:
\(\left[\begin{array}{c} -5 \\ -1 \\ -7 \end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} 3 \\ 0 \\ 6 \end{array}\right] , \left[\begin{array}{c} 2 \\ 0 \\ 4 \end{array}\right] , \left[\begin{array}{c} -4 \\ 1 \\ -5 \end{array}\right]\right\}\text{.}\)
Part 2.
Explain why the statement you wrote is false, to conclude that the vector does not belong to the span.