Linear Algebra for Team-Based Inquiry Learning

2023 Edition

Steven Clontz Drew Lewis
University of South Alabama

August 24, 2023

Section 2.2: Spanning Sets (EV2)

Observation 2.2.1

Any single non-zero vector/number \(x\) in \(\IR^1\) spans \(\IR^1\text{,}\) since \(\IR^1=\setBuilder{cx}{c\in\IR}\text{.}\)

Figure 1. An \(\IR^1\) vector

Activity 2.2.1 (~5 min)

How many vectors are required to span \(\IR^2\text{?}\) Sketch a drawing in the \(xy\) plane to support your answer.

Figure 2. The \(xy\) plane \(\IR^2\)
  1. \(\displaystyle 1\)

  2. \(\displaystyle 2\)

  3. \(\displaystyle 3\)

  4. \(\displaystyle 4\)

  5. Infinitely Many

Activity 2.2.2 (~5 min)

How many vectors are required to span \(\IR^3\text{?}\)

Figure 3. \(\IR^3\) space
  1. \(\displaystyle 1\)

  2. \(\displaystyle 2\)

  3. \(\displaystyle 3\)

  4. \(\displaystyle 4\)

  5. Infinitely Many

Fact 2.2.2

At least \(n\) vectors are required to span \(\IR^n\text{.}\)

Figure 4. Failed attempts to span \(\IR^n\) by \(<n\) vectors

Activity 2.2.3 (~15 min)

Consider the question: Does every vector in \(\IR^3\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\text{?}\)

Part 1.

Determine if \(\left[\begin{array}{c} 7 \\ -3 \\ -2 \end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\text{.}\)

Activity 2.2.3 (~15 min)

Consider the question: Does every vector in \(\IR^3\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\text{?}\)

Part 2.

Determine if \(\left[\begin{array}{c} 2 \\ 5 \\ 7 \end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\text{.}\)

Activity 2.2.3 (~15 min)

Consider the question: Does every vector in \(\IR^3\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\text{?}\)

Part 3.

An arbitrary vector \(\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\) provided the equation

\begin{equation*} x_1\left[\begin{array}{c}1\\-1\\0\end{array}\right]+ x_2\left[\begin{array}{c}-2\\0\\1\end{array}\right]+ x_3\left[\begin{array}{c}-2\\-2\\2\end{array}\right]=\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right] \end{equation*}
has...
  1. no solutions.
  2. exactly one solution.
  3. at least one solution.
  4. infinitely-many solutions.

Activity 2.2.3 (~15 min)

Consider the question: Does every vector in \(\IR^3\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right],\left[\begin{array}{c}-2\\-2\\2\end{array}\right]\right\}\text{?}\)

Part 4.

We’re guaranteed at least one solution if the RREF of the corresponding augmented matrix has no contradictions; likewise, we have no solutions if the RREF corresponds to the contradiction \(0=1\text{.}\) Given

\begin{equation*} \left[\begin{array}{ccc|c}1&-2&-2&\unknown\\-1&0&-2&\unknown\\0&1&2&\unknown\end{array}\right]\sim \left[\begin{array}{ccc|c}1&0&2&\unknown\\0&1&2&\unknown\\0&0&0&\unknown\end{array}\right] \end{equation*}
we may conclude that the set does not span all of \(\IR^3\) because...
  1. the row \([0\,1\,2\,|\,\unknown]\) prevents a contradiction.
  2. the row \([0\,1\,2\,|\,\unknown]\) allows a contradiction.
  3. the row \([0\,0\,0\,|\,\unknown]\) prevents a contradiction.
  4. the row \([0\,0\,0\,|\,\unknown]\) allows a contradiction.

Fact 2.2.3

The set \(\{\vec v_1,\dots,\vec v_m\}\) spans all of \(\IR^n\) exactly when the vector equation

\begin{equation*} x_1 \vec{v}_1 + \cdots x_m\vec{v}_m = \vec{w} \end{equation*}
is consistent for every vector \(\vec{w}\text{.}\)

Likewise, the set \(\{\vec v_1,\dots,\vec v_m\}\) fails to span all of \(\IR^n\) exactly when the vector equation

\begin{equation*} x_1 \vec{v}_1 + \cdots x_m\vec{v}_m = \vec{w} \end{equation*}
is inconsistent for some vector \(\vec{w}\text{.}\)

Note these two possibilities are decided based on whether or not \(\RREF[\vec v_1\,\dots\,\vec v_m]\) has either all pivot rows, or at least one non-pivot row (a row of zeroes):

\begin{equation*} \left[\begin{array}{ccc|c}1&-2&-2\\-1&0&-2\\0&1&2\end{array}\right]\sim \left[\begin{array}{ccc|c}1&0&2\\0&1&2\\0&0&0\end{array}\right]\text{.} \end{equation*}

Activity 2.2.4 (~5 min)

Consider the set of vectors \(S=\left\{ \left[\begin{array}{c}2\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}1\\-4\\3\\0\end{array}\right], \left[\begin{array}{c}1\\7\\-3\\-1\end{array}\right], \left[\begin{array}{c}0\\3\\5\\7\end{array}\right], \left[\begin{array}{c}3\\13\\7\\16\end{array}\right] \right\}\) and the question “Does \(\IR^4=\vspan S\text{?}\)

Part 1.

Rewrite this question in terms of the solutions to a vector equation.

Activity 2.2.4 (~5 min)

Consider the set of vectors \(S=\left\{ \left[\begin{array}{c}2\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}1\\-4\\3\\0\end{array}\right], \left[\begin{array}{c}1\\7\\-3\\-1\end{array}\right], \left[\begin{array}{c}0\\3\\5\\7\end{array}\right], \left[\begin{array}{c}3\\13\\7\\16\end{array}\right] \right\}\) and the question “Does \(\IR^4=\vspan S\text{?}\)

Part 2.

Answer your new question, and use this to answer the original question.

Activity 2.2.5 (~5 min)

Let \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \IR^7\) be three Euclidean vectors, and suppose \(\vec{w}\) is another vector with \(\vec{w} \in \vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\}\text{.}\) What can you conclude about \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{?}\)

  1. \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \) is larger than \(\vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}\)
  2. \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \) is the same as \(\vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}\)
  3. \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \) is smaller than \(\vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}\)