Linear Algebra for Team-Based Inquiry Learning

2023 Edition

Steven Clontz Drew Lewis
University of South Alabama

August 24, 2023

Section 2.6: Subspace Basis and Dimension (EV6)

Observation 2.6.1

Recall from section Section 2.3 Subspaces (EV3) that a subspace of a vector space is the result of spanning a set of vectors from that space.

Recall also that a linearly dependent set contains “redundant” vectors. For example, only two of the three vectors in Figure 14 are needed to span the planar subspace.

Activity 2.6.1 (~10 min)

Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\} \text{.}\)

Part 1.

Mark the column of \(\RREF\left[\begin{array}{cccc} 2&2&2&1\\ 3&0&-3&5\\ 0&1&2&-1\\ 1&-1&-3&0 \end{array}\right]\) that shows that \(W\)’s spanning set is linearly dependent.

Activity 2.6.1 (~10 min)

Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\} \text{.}\)

Part 2.

What would be the result of removing the vector that gave us this column?

  1. The set still spans \(W\text{,}\) and remains linearly dependent.
  2. The set still spans \(W\text{,}\) but is now also linearly independent.
  3. The set no longer spans \(W\text{,}\) and remains linearly dependent.
  4. The set no longer spans \(W\text{,}\) but is now linearly independent.

Definition 2.6.2

Let \(W\) be a subspace of a vector space. A basis for \(W\) is a linearly independent set of vectors that spans \(W\) (but not necessarily the entire vector space).

Observation 2.6.3

So given a set \(S=\{\vec v_1,\dots,\vec v_m\}\text{,}\) to compute a basis for the subspace \(\vspan S\text{,}\) simply remove the vectors corresponding to the non-pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\) For example, since

\begin{equation*} \RREF \left[\begin{array}{cccc} 1 & 2 & 0 & 1 \\ 2 & 4 & -2 & 2 \\ 3 & 6 & -2 & 1 \\ \end{array}\right] = \left[\begin{array}{cccc} \markedPivot{1} & 2 & 0 & 1 \\ 0 & 0 & \markedPivot{1} & 1 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{equation*}
the subspace \(W=\vspan\setList{ \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}2\\4\\6\end{array}\right], \left[\begin{array}{c}0\\-2\\-2\end{array}\right], \left[\begin{array}{c}1\\2\\1\end{array}\right] }\) has \(\setList{ \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}0\\-2\\-2\end{array}\right] }\) as a basis.

Activity 2.6.2 (~10 min)

Part 1.

Find a basis for \(\vspan S\) where

\begin{equation*} S=\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\}\text{.} \end{equation*}

Activity 2.6.2 (~10 min)

Part 2.

Find a basis for \(\vspan T\) where

\begin{equation*} T=\left\{ \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right], \left[\begin{array}{c}2\\3\\0\\1\end{array}\right] \right\}\text{.} \end{equation*}

Observation 2.6.4

Even though we found different bases for them, \(\vspan S\) and \(\vspan T\) are exactly the same subspace of \(\IR^4\text{,}\) since

\begin{equation*} S=\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\} = \left\{ \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right], \left[\begin{array}{c}2\\3\\0\\1\end{array}\right] \right\}=T\text{.} \end{equation*}

Thus the basis for a subspace is not unique in general.

Fact 2.6.5

Any non-trivial real vector space has infinitely-many different bases, but all the bases for a given vector space are exactly the same size.

For example,

\begin{equation*} \setList{\vec e_1,\vec e_2,\vec e_3} \text{ and } \setList{ \left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\end{array}\right], \left[\begin{array}{c}1\\1\\1\end{array}\right] } \text{ and } \setList{ \left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\-2\\1\end{array}\right], \left[\begin{array}{c}3\\-2\\5\end{array}\right] } \end{equation*}
are all valid bases for \(\IR^3\text{,}\) and they all contain three vectors.

Definition 2.6.6

The dimension of a vector space or subspace is equal to the size of any basis for the vector space.

As you’d expect, \(\IR^n\) has dimension \(n\text{.}\) For example, \(\IR^3\) has dimension \(3\) because any basis for \(\IR^3\) such as

\begin{equation*} \setList{\vec e_1,\vec e_2,\vec e_3} \text{ and } \setList{ \left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\end{array}\right], \left[\begin{array}{c}1\\1\\1\end{array}\right] } \text{ and } \setList{ \left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\-2\\1\end{array}\right], \left[\begin{array}{c}3\\-2\\5\end{array}\right] } \end{equation*}
contains exactly three vectors.

Activity 2.6.3

Consider the following subspace \(W\) of \(\mathbb R^4\text{:}\)

\begin{equation*} W=\mathrm{span}\,\left\{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ 0 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} -3 \\ 1 \\ -5 \\ 5 \end{array}\right] , \left[\begin{array}{c} 12 \\ -3 \\ 15 \\ -18 \end{array}\right] \right\}. \end{equation*}

Part 1.

Explain and demonstrate how to find a basis of \(W\text{.}\)

Activity 2.6.3

Consider the following subspace \(W\) of \(\mathbb R^4\text{:}\)

\begin{equation*} W=\mathrm{span}\,\left\{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ 0 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} -3 \\ 1 \\ -5 \\ 5 \end{array}\right] , \left[\begin{array}{c} 12 \\ -3 \\ 15 \\ -18 \end{array}\right] \right\}. \end{equation*}

Part 2.

Explain and demonstrate how to find the dimension of \(W\text{.}\)

Activity 2.6.4