Linear Algebra for Team-Based Inquiry Learning

2023 Edition

Steven Clontz Drew Lewis
University of South Alabama

August 24, 2023

Section 2.7: Homogeneous Linear Systems (EV7)

Definition 2.7.1

A homogeneous system of linear equations is one of the form:

\begin{alignat*}{5} a_{11}x_1 &\,+\,& a_{12}x_2 &\,+\,& \dots &\,+\,& a_{1n}x_n &\,=\,& 0 \\ a_{21}x_1 &\,+\,& a_{22}x_2 &\,+\,& \dots &\,+\,& a_{2n}x_n &\,=\,& 0 \\ \vdots& &\vdots& && &\vdots&&\vdots\\ a_{m1}x_1 &\,+\,& a_{m2}x_2 &\,+\,& \dots &\,+\,& a_{mn}x_n &\,=\,& 0 \end{alignat*}

This system is equivalent to the vector equation:

\begin{equation*} x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0} \end{equation*}
and the augmented matrix:
\begin{equation*} \left[\begin{array}{cccc|c} a_{11} & a_{12} & \cdots & a_{1n} & 0\\ a_{21} & a_{22} & \cdots & a_{2n} & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} & 0 \end{array}\right] \end{equation*}

Activity 2.7.1 (~5 min)

Consider the homogeneous vector equation \(x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0}\text{.}\)

Part 1.

Note that if \(\left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}\right] \) and \(\left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array}\right] \) are both solutions, we know that

\begin{equation*} a_1 \vec{v}_1+\cdots+a_n \vec{v}_n = \vec{0} \text{ and } b_1 \vec{v}_1+\cdots+b_n \vec{v}_n = \vec{0} \text{.} \end{equation*}
Therefore by adding these equations,
\begin{equation*} (a_1 + b_1) \vec{v}_1+\cdots+(a_n+b_n) \vec{v}_n = \vec{0} \end{equation*}

shows that \(\left[\begin{array}{c} a_1+ b_1 \\ \vdots \\ a_n+b_n \end{array}\right] \) is also a solution. Thus the solution set of a homogeneous system is...

  1. Closed under addition.

  2. Not closed under addition.

  3. Linearly dependent.

  4. Linearly independent.

Activity 2.7.1 (~5 min)

Consider the homogeneous vector equation \(x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0}\text{.}\)

Part 2.

Similarly, if \(c \in \IR\text{,}\) \(\left[\begin{array}{c} ca_1 \\ \vdots \\ ca_n \end{array}\right] \) is a solution. Thus the solution set of a homogeneous system is also closed under scalar multiplication, and therefore...

  1. A basis for \(\IR^n\text{.}\)

  2. A subspace of \(\IR^n\text{.}\)

  3. All of \(\IR^n\text{.}\)

  4. The empty set.

Activity 2.7.2 (~10 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} x_1&\,+\,&2x_2&\,\,& &\,+\,& x_4 &=& 0\\ 2x_1&\,+\,&4x_2&\,-\,&x_3 &\,-\,&2 x_4 &=& 0\\ 3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,& x_4 &=& 0 \end{alignat*}

Part 1.

Find its solution set (a subspace of \(\IR^4\)).

Activity 2.7.2 (~10 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} x_1&\,+\,&2x_2&\,\,& &\,+\,& x_4 &=& 0\\ 2x_1&\,+\,&4x_2&\,-\,&x_3 &\,-\,&2 x_4 &=& 0\\ 3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,& x_4 &=& 0 \end{alignat*}

Part 2.

Rewrite this solution space in the form

\begin{equation*} \setBuilder{ a \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right] + b \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right] }{a,b \in \IR}. \end{equation*}

Activity 2.7.2 (~10 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} x_1&\,+\,&2x_2&\,\,& &\,+\,& x_4 &=& 0\\ 2x_1&\,+\,&4x_2&\,-\,&x_3 &\,-\,&2 x_4 &=& 0\\ 3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,& x_4 &=& 0 \end{alignat*}

Part 3.

Rewrite this solution space in the form

\begin{equation*} \vspan\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}. \end{equation*}

Activity 2.7.2 (~10 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} x_1&\,+\,&2x_2&\,\,& &\,+\,& x_4 &=& 0\\ 2x_1&\,+\,&4x_2&\,-\,&x_3 &\,-\,&2 x_4 &=& 0\\ 3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,& x_4 &=& 0 \end{alignat*}

Part 4.

Which of these choices best describes the set of two vectors \(\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}\) used in this span?

  1. The set is linearly dependent.

  2. The set is linearly independent.

  3. The set spans all of \(\IR^4\text{.}\)

  4. The set fails to span the solution space.

Fact 2.7.2

The coefficients of the free variables in the solution space of a linear system always yield linearly independent vectors that span the solution space.

Thus if

\begin{equation*} \setBuilder{ a \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right] + b \left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right] }{ a,b \in \IR } = \vspan\left\{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right], \left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right] \right\} \end{equation*}
is the solution space for a homogeneous system, then
\begin{equation*} \setList{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right], \left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right] } \end{equation*}
is a basis for the solution space.

Activity 2.7.3 (~10 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} 2x_1&\,+\,&4x_2&\,+\,& 2x_3&\,-\,&4x_4 &=& 0 \\ -2x_1&\,-\,&4x_2&\,+\,&x_3 &\,+\,& x_4 &=& 0\\ 3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,&4 x_4 &=& 0 \end{alignat*}

Find a basis for its solution space.

Activity 2.7.4 (~10 min)

Consider the homogeneous vector equation

\begin{equation*} x_1 \left[\begin{array}{c} 2 \\ -2 \\ 3 \end{array}\right]+ x_2 \left[\begin{array}{c} 4 \\ -4 \\ 6 \end{array}\right]+ x_3 \left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right]+ x_4 \left[\begin{array}{c} -4 \\ 1 \\ -4 \end{array}\right]= \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right] \end{equation*}

Find a basis for its solution space.

Activity 2.7.5 (~5 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} x_1&\,-\,&3x_2&\,+\,& 2x_3 &=& 0\\ 2x_1&\,+\,&6x_2&\,+\,&4x_3 &=& 0\\ x_1&\,+\,&6x_2&\,-\,&4x_3 &=& 0 \end{alignat*}

Part 1.

Find its solution space.

Activity 2.7.5 (~5 min)

Consider the homogeneous system of equations

\begin{alignat*}{5} x_1&\,-\,&3x_2&\,+\,& 2x_3 &=& 0\\ 2x_1&\,+\,&6x_2&\,+\,&4x_3 &=& 0\\ x_1&\,+\,&6x_2&\,-\,&4x_3 &=& 0 \end{alignat*}

Part 2.

Which of these is the best choice of basis for this solution space?

  1. \(\displaystyle \{\}\)
  2. \(\displaystyle \{\vec 0\}\)
  3. The basis does not exist

Activity 2.7.6 (~5 min)

Suppose that in a certain 3D video game, the “camera” aligns the position \((x,y,z)\) within the level onto the pixel located at \((x+y,y-z)\) on the television screen.

Part 1.

What homoegeneous linear system describes the positions within the level that would be aligned with the pixel \((0,0)\) on the screen?

Activity 2.7.6 (~5 min)

Suppose that in a certain 3D video game, the “camera” aligns the position \((x,y,z)\) within the level onto the pixel located at \((x+y,y-z)\) on the television screen.

Part 2.

Solve this system to describe these locations.