Furthermore, a square matrix \(M\) is invertible if and only if \(\det(M)\not=0\text{.}\)
Observation 5.3.2
Consider the linear transformation \(A : \IR^2 \rightarrow \IR^2\) given by the matrix \(A = \left[\begin{array}{cc} 2 & 2 \\ 0 & 3 \end{array}\right]\text{.}\)
Let \(A \in M_{n,n}\text{.}\) An eigenvector for \(A\) is a vector \(\vec{x} \in \IR^n\) such that \(A\vec{x}\) is parallel to \(\vec{x}\text{.}\)
In other words, \(A\vec{x}=\lambda \vec{x}\) for some scalar \(\lambda\text{.}\) If \(\vec x\not=\vec 0\text{,}\) then we say \(\vec x\) is a nontrivial eigenvector and we call this \(\lambda\) an eigenvalue of \(A\text{.}\)
Activity 5.3.2 (~5 min)
Finding the eigenvalues \(\lambda\) that satisfy
\begin{equation*}
A\vec x=\lambda\vec x=\lambda(I\vec x)=(\lambda I)\vec x
\end{equation*}
for some nontrivial eigenvector \(\vec x\) is equivalent to finding nonzero solutions for the matrix equation
\begin{equation*}
(A-\lambda I)\vec x =\vec 0\text{.}
\end{equation*}
Part 1.
If \(\lambda\) is an eigenvalue, and \(T\) is the transformation with standard matrix \(A-\lambda I\text{,}\) which of these must contain a non-zero vector?
The kernel of \(T\)
The image of \(T\)
The domain of \(T\)
The codomain of \(T\)
Activity 5.3.2 (~5 min)
Finding the eigenvalues \(\lambda\) that satisfy
\begin{equation*}
A\vec x=\lambda\vec x=\lambda(I\vec x)=(\lambda I)\vec x
\end{equation*}
for some nontrivial eigenvector \(\vec x\) is equivalent to finding nonzero solutions for the matrix equation
\begin{equation*}
(A-\lambda I)\vec x =\vec 0\text{.}
\end{equation*}
Part 2.
Therefore, what can we conclude?
\(A\) is invertible
\(A\) is not invertible
\(A-\lambda I\) is invertible
\(A-\lambda I\) is not invertible
Activity 5.3.2 (~5 min)
Finding the eigenvalues \(\lambda\) that satisfy
\begin{equation*}
A\vec x=\lambda\vec x=\lambda(I\vec x)=(\lambda I)\vec x
\end{equation*}
for some nontrivial eigenvector \(\vec x\) is equivalent to finding nonzero solutions for the matrix equation
\begin{equation*}
(A-\lambda I)\vec x =\vec 0\text{.}
\end{equation*}
Part 3.
And what else?
\(\displaystyle \det A=0\)
\(\displaystyle \det A=1\)
\(\displaystyle \det(A-\lambda I)=0\)
\(\displaystyle \det(A-\lambda I)=1\)
Fact 5.3.4
The eigenvalues \(\lambda\) for a matrix \(A\) are exactly the values that make \(A-\lambda I\) non-invertible.
Thus the eigenvalues \(\lambda\) for a matrix \(A\) are the solutions to the equation