Linear Algebra for Team-Based Inquiry Learning

2023 Edition

Steven Clontz Drew Lewis
University of South Alabama

August 24, 2023

Section 4.3: Solving Systems with Matrix Inverses (MX3)

Activity 4.3.1 (~15 min)

Consider the following linear system with a unique solution:

\begin{equation*} \begin{matrix} 3x_{1} & - & 2x_{2} & - & 2x_{3} & - & 4x_{4} & = & -7 \\ 2x_{1} & - & x_{2} & - & x_{3} & - & x_{4} & = & -1 \\ -x_{1} & & & + & x_{3} & & & = & -1 \\ & - & x_{2} & & & - & 2x_{4} & = & -5 \\ \end{matrix} \end{equation*}

Part 1.

Define

\begin{equation*} T\left(\left[\begin{matrix}x_1\\x_2\\x_3\\x_4\end{matrix}\right]\right)= \left[\begin{matrix}\hspace{1em}\unknown\hspace{1em}\\\hspace{1em}\unknown\hspace{1em}\\ \hspace{1em}\unknown\hspace{1em}\\\hspace{1em}\unknown\hspace{1em}\end{matrix}\right] \end{equation*}
so that \(T(\vec x)=\left[\begin{matrix}-7\\-1\\-1\\-5\end{matrix}\right]\) has the same solution set as this system.

Activity 4.3.1 (~15 min)

Consider the following linear system with a unique solution:

\begin{equation*} \begin{matrix} 3x_{1} & - & 2x_{2} & - & 2x_{3} & - & 4x_{4} & = & -7 \\ 2x_{1} & - & x_{2} & - & x_{3} & - & x_{4} & = & -1 \\ -x_{1} & & & + & x_{3} & & & = & -1 \\ & - & x_{2} & & & - & 2x_{4} & = & -5 \\ \end{matrix} \end{equation*}

Part 2.

Define

\begin{equation*} A= \left[\begin{matrix} \unknown&\unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown&\unknown \end{matrix}\right] \end{equation*}
so that \(A\vec x=\left[\begin{matrix}-7\\-1\\-1\\-5\end{matrix}\right]\) has the same solution set as this system.

Activity 4.3.1 (~15 min)

Consider the following linear system with a unique solution:

\begin{equation*} \begin{matrix} 3x_{1} & - & 2x_{2} & - & 2x_{3} & - & 4x_{4} & = & -7 \\ 2x_{1} & - & x_{2} & - & x_{3} & - & x_{4} & = & -1 \\ -x_{1} & & & + & x_{3} & & & = & -1 \\ & - & x_{2} & & & - & 2x_{4} & = & -5 \\ \end{matrix} \end{equation*}

Part 3.

Find

\begin{equation*} B= \left[\begin{matrix} \unknown&\unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown&\unknown \end{matrix}\right] \end{equation*}
so that \(BA\vec x=\vec x\text{.}\)

Activity 4.3.1 (~15 min)

Consider the following linear system with a unique solution:

\begin{equation*} \begin{matrix} 3x_{1} & - & 2x_{2} & - & 2x_{3} & - & 4x_{4} & = & -7 \\ 2x_{1} & - & x_{2} & - & x_{3} & - & x_{4} & = & -1 \\ -x_{1} & & & + & x_{3} & & & = & -1 \\ & - & x_{2} & & & - & 2x_{4} & = & -5 \\ \end{matrix} \end{equation*}

Part 4.

Find \(\vec x=BA\vec x=B\left[\begin{matrix}-7\\-1\\-1\\-5\end{matrix}\right]\) to solve the system.

Remark 4.3.1

The linear system described by the augmented matrix \([A \mid \vec w]\) has exactly the same solution set as the matrix equation \(A\vec x=\vec w\text{.}\)

Activity 4.3.2

Let \(A\vec x=\vec w\) describe a linear system. When will this linear system have exactly one solution?

  1. When \(A\) is invertible.

  2. When \(A\) is not invertible.

  3. When \(\RREF A\) has a non-pivot column.

  4. When \(\RREF A\) has a non-pivot row.

Fact 4.3.2

When \(A\vec x=\vec w\) has exactly one solution, this solution is given by \(\vec x=A^{-1}\vec w\text{.}\)

Activity 4.3.3

Consider the vector equation

\begin{equation*} x_{1} \left[\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right] + x_{2} \left[\begin{array}{c} -2 \\ -3 \\ 3 \end{array}\right] + x_{3} \left[\begin{array}{c} 1 \\ 4 \\ -3 \end{array}\right] = \left[\begin{array}{c} -3 \\ 5 \\ -1 \end{array}\right] \end{equation*}
with a unique solution.

Part 1.

Explain and demonstrate how this problem can be restated using matrix multiplication.

Activity 4.3.3

Consider the vector equation

\begin{equation*} x_{1} \left[\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right] + x_{2} \left[\begin{array}{c} -2 \\ -3 \\ 3 \end{array}\right] + x_{3} \left[\begin{array}{c} 1 \\ 4 \\ -3 \end{array}\right] = \left[\begin{array}{c} -3 \\ 5 \\ -1 \end{array}\right] \end{equation*}
with a unique solution.

Part 2.

Use the properties of matrix multiplication to find the unique solution.