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Chapter 1

Systems of Linear Equations
(LE)

Learning Outcomes
How can we solve systems of linear equations?

By the end of this chapter, you should be able to...

1. Translate back and forth between a system of linear equations, a vector
equation, and the corresponding augmented matrix.

2. Explain why a matrix isn’t in reduced row echelon form, and put a matrix
in reduced row echelon form.

3. Determine the number of solutions for a system of linear equations or a
vector equation.

4. Compute the solution set for a system of linear equations or a vector
equation with infinitly many solutions.

Readiness Assurance. Before beginning this chapter, you should be able
to...

1. Determine if a system to a two-variable system of linear equations will
have zero, one, or infinitely-many solutions by graphing.

• Review: Khan Academy1

2. Find the unique solution to a two-variable system of linear equations by
back-substitution.

• Review: Khan Academy2

3. Describe sets using set-builder notation, and check if an element is a
member of a set described by set-builder notation.

• Review: YouTube3

1bit.ly/2l21etm
2www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations/

alg-basics-solving-systems-with-substitution/v/practice-using-substitution-for-systems
3youtu.be/xnfUZ-NTsCE

1

http://bit.ly/2l21etm
https://www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations/alg-basics-solving-systems-with-substitution/v/practice-using-substitution-for-systems
https://youtu.be/xnfUZ-NTsCE
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1.1 Linear Systems, Vector Equations, and Aug-
mented Matrices (LE1)

Learning Outcomes
• Translate back and forth between a system of linear equations, a vector

equation, and the corresponding augmented matrix.

1.1.1 Class Activities
Definition 1.1.1 A linear equation is an equation of the variables xi of the
form

a1x1 + a2x2 + · · ·+ anxn = b.

A solution for a linear equation is a Euclidean vector
s1
s2
...
sn


that satisfies

a1s1 + a2s2 + · · ·+ ansn = b

(that is, a Euclidean vector that can be plugged into the equation). ♢
Remark 1.1.2 In previous classes you likely used the variables x, y, z in equa-
tions. However, since this course often deals with equations of four or more
variables, we will often write our variables as xi, and assume x = x1, y =
x2, z = x3, w = x4 when convenient.
Definition 1.1.3 A system of linear equations (or a linear system for
short) is a collection of one or more linear equations.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn = bm

Its solution set is given by


s1
s2
...
sn


∣∣∣∣∣∣∣∣∣


s1
s2
...
sn

 is a solution to all equations in the system

 .

♢
Remark 1.1.4 When variables in a large linear system are missing, we prefer
to write the system in one of the following standard forms:
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Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1 +0x2 +3x3 = 3

3x1 − 2x2 +4x3 = 0

0x1 − 1x2 +1x3 =−2

Concise standard form:

x1 +3x3 = 3

3x1 − 2x2 +4x3 = 0

− x2 + x3 =−2

Remark 1.1.5 It will often be convenient to think of a system of equations as
a vector equation.

By applying vector operations and equating components, it is straightfor-
ward to see that the vector equation

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


is equivalent to the system of equations

x1 +3x3 = 3

3x1 − 2x2 +4x3 = 0

− x2 + x3 =−2

Definition 1.1.6 A linear system is consistent if its solution set is non-empty
(that is, there exists a solution for the system). Otherwise it is inconsistent.

♢
Fact 1.1.7 All linear systems are one of the following:

1. Consistent with one solution: its solution set contains a single vector, e.g.
 1

2
3


2. Consistent with infinitely-many solutions: its solution set contains in-

finitely many vectors, e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


3. Inconsistent: its solution set is the empty set, denoted by either {} or ∅.

Activity 1.1.8 All inconsistent linear systems contain a logical contradiction.
Find a contradiction in this system to show that its solution set is the empty
set.

−x1 + 2x2 = 5

2x1 − 4x2 = 6

Activity 1.1.9 Consider the following consistent linear system.

−x1 + 2x2 = −3

2x1 − 4x2 = 6

(a) Find three different solutions for this system.

(b) Let x2 = a where a is an arbitrary real number, then find an expression

for x1 in terms of a. Use this to write the solution set
{[

?
a

] ∣∣∣∣ a ∈ R
}

for the linear system.
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Activity 1.1.10 Consider the following linear system.

x1 +2x2 − x4 = 3

x3 +4x4 =−2

Describe the solution set 


?
a
?
b


∣∣∣∣∣∣∣∣ a, b ∈ R


to the linear system by setting x2 = a and x4 = b, and then solving for x1 and
x3.
Observation 1.1.11 Solving linear systems of two variables by graphing or
substitution is reasonable for two-variable systems, but these simple techniques
won’t usually cut it for equations with more than two variables or more than
two equations. For example,

−2x1 − 4x2 + x3 − 4x4 =−8

x1 +2x2 +2x3 +12x4 =−1

x1 +2x2 + x3 + 8x4 = 1

has the exact same solution set as the system in the previous activity, but we’ll
want to learn new techniques to compute these solutions efficiently.
Remark 1.1.12 The only important information in a linear system are its
coefficients and constants.Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1 +0x2 +3x3 = 3

3x1 − 2x2 +4x3 = 0

0x1 − 1x2 +1x3 =−2

Coefficients/constants:

1 0 3 | 3

3 −2 4 | 0

0 −1 1 | −2

Definition 1.1.13 A system of m linear equations with n variables is often
represented by writing its coefficients and constants in an augmented matrix.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn = bm
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

... . . . ...
...

am1 am2 · · · amn bm


♢

Example 1.1.14 The corresponding augmented matrix for this system is ob-
tained by simply writing the coefficients and constants in matrix form.
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Linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Augmented matrix: 1 0 3 3
3 −2 4 0
0 −1 1 −2


Vector equation:

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


□

1.1.2 Videos

Interactive1

Figure 1 Video: Converting between systems, vector equations, and aug-
mented matrices

1.1.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/LE1.slides.html.

1.1.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/LE1/.

1.1.5 Mathematical Writing Explorations
Exploration 1.1.15 Choose a value for the real constant k such that the
following system has one, many, or no solutions. In each case, write the solution
set.

Consider the linear system:

x1 − x2 = 1

3x1 − 3x2 = k

Exploration 1.1.16 Consider the linear system:
ax1 + bx2 = j

cx1 + dx2 = k

Assume j and k are arbitrary real numbers.
1www.youtube.com/watch?v=kpOK7RhFEiQ

https://www.youtube.com/watch?v=kpOK7RhFEiQ
https://teambasedinquirylearning.github.io/linear-algebra/2023/LE1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/LE1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE1/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE1/
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• Choose values for a, b, c, and d, such that ad − bc = 0. Show that this
system is inconsistent.

• Prove that, if ad − bc 6= 0, the system is consistent with exactly one
solution.

Exploration 1.1.17 Given a set S, we can define a relation between two
arbitrary elements a, b ∈ S. If the two elements are related, we denote this
a ∼ b.

Any relation on a set S that satisfies the properties below is an equivalence
relation.

• Reflexive: For any a ∈ S, a ∼ a

• Symmetric: For a, b ∈ S, if a ∼ b, then b ∼ a

• Transitive: for any a, b, c ∈ S, a ∼ b and b ∼ c implies a ∼ c

For each of the following relations, show that it is or is not an equivalence
relation.

• For a, b,∈ R, a ∼ b if an only if a ≤ b.

• For a, b,∈ R, a ∼ b if an only if |a| = |b|.

1.1.6 Sample Problem and Solution
Sample problem Example B.1.1.

1.2 Row Reduction of Matrices (LE2)

Learning Outcomes
• Explain why a matrix isn’t in reduced row echelon form, and put a matrix

in reduced row echelon form.

1.2.1 Class Activities
Definition 1.2.1 Two systems of linear equations (and their corresponding
augmented matrices) are said to be equivalent if they have the same solution
set.

For example, both of these systems share the same solution set
{[

1
1

]}
.

3x1 − 2x2 =1

x1 +4x2 =5

3x1 − 2x2 =1

4x1 +2x2 =6

Therefore these augmented matrices are equivalent (even though they’re
not equal), which we denote with ∼:[

3 −2 1
1 4 5

]
6=
[

3 −2 1
4 2 6

]
[

3 −2 1
1 4 5

]
∼
[

3 −2 1
4 2 6

]
♢
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Activity 1.2.2 Following are seven procedures used to manipulate an aug-
mented matrix. Label the procedures that would result in an equivalent aug-
mented matrix as valid, and label the procedures that might change the solution
set of the corresponding linear system as invalid.

A. Swap two rows.

B. Swap two columns.

C. Add a constant to every term in a row.

D. Multiply a row by a nonzero constant.

E. Add a constant multiple of one row to another row.

F. Replace a column with zeros.

G. Replace a row with zeros.
Definition 1.2.3 The following three row operations produce equivalent
augmented matrices.

1. Swap two rows, for example, R1 ↔ R2:[
1 2 3
4 5 6

]
∼
[

4 5 6
1 2 3

]
2. Multiply a row by a nonzero constant, for example, 2R1 → R1:[

1 2 3
4 5 6

]
∼
[

2(1) 2(2) 2(3)
4 5 6

]
3. Add a constant multiple of one row to another row, for example, R2 −

4R1 → R2: [
1 2 3
4 5 6

]
∼
[

1 2 3
4− 4(1) 5− 4(2) 6− 4(3)

]
♢

Activity 1.2.4 Consider the following (equivalent) linear systems.
A)

x+2y+ z =3

−x− y+ z =1

2x+5y+3z =7

B)

2x+5y+3z =7

−x− y+ z =1

x+2y+ z =3

C)

x − z =1

y+2z =4

y+ z =1

D)

x+2y+ z =3

y+2z =4

2x+5y+3z =7

E)

x − z =1

y+ z =1

z =3

F)

x+2y+ z =3

y+2z =4

y+ z =1

Rank the six linear systems from most complicated to simplest.
Activity 1.2.5 We can rewrite the previous in terms of equivalences of aug-
mented matrices 2 5 3 7

−1 −1 1 1
1 2 1 3

 ∼

 1 2 1 3
−1 −1 1 1
2 5 3 7

 ∼

 1 2 1 3
0 1 2 4
2 5 3 7

 ∼
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 1 2 1 3

0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1

0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1

0 1 1 1
0 0 −1 −3


Determine the row operation(s) necessary in each step to transform the most
complicated system’s augmented matrix into the simplest.
Definition 1.2.6 A matrix is in reduced row echelon form (RREF) if

1. The leading term (first nonzero term) of each nonzero row is a 1. Call
these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term above or below a pivot is zero.

4. All rows of zeroes are at the bottom of the matrix.

Every matrix has a unique reduced row echelon form. If A is a matrix, we
write RREF(A) for the reduced row echelon form of that matrix. ♢
Activity 1.2.7 Recall that a matrix is in reduced row echelon form
(RREF) if

1. The leading term (first nonzero term) of each nonzero row is a 1. Call
these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term above or below a pivot is zero.

4. All rows of zeroes are at the bottom of the matrix.

For each matrix, circle the leading terms, and label it as RREF or not RREF.
For the ones not in RREF, find their RREF.

A =

 1 0 0 3
0 0 1 −1
0 0 0 0

 B =

 1 2 4 3
0 0 1 −1
0 0 0 0

 C =

 0 0 0 0
1 2 0 3
0 0 1 −1


Activity 1.2.8 Recall that a matrix is in reduced row echelon form
(RREF) if

1. The leading term (first nonzero term) of each nonzero row is a 1. Call
these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term above or below a pivot is zero.

4. All rows of zeroes are at the bottom of the matrix.

For each matrix, circle the leading terms, and label it as RREF or not RREF.
For the ones not in RREF, find their RREF.

D =

 1 0 2 −3
0 3 3 −3
0 0 0 0

 E =

 0 1 0 7
1 0 0 4
0 0 0 0

 F =

 1 0 0 4
0 1 0 7
0 0 1 0


Remark 1.2.9 In practice, if we simply need to convert a matrix into reduced
row echelon form, we use technology to do so.
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However, it is also important to understand the Gauss-Jordan elimina-
tion algorithm that a computer or calculator uses to convert a matrix (aug-
mented or not) into reduced row echelon form. Understanding this algorithm
will help us better understand how to interpret the results in many applications
we use it for in Module V.
Activity 1.2.10 Consider the matrix 2 6 −1 6

1 3 −1 2
−1 −3 2 0

 .

Which row operation is the best choice for the first move in converting to
RREF?

A. Add row 3 to row 2 (R2 +R3 → R2)

B. Add row 2 to row 3 (R3 +R2 → R3)

C. Swap row 1 to row 2 (R1 ↔ R2)

D. Add -2 row 2 to row 1 (R1 − 2R2 → R1)
Activity 1.2.11 Consider the matrix 1 3 −1 2

2 6 −1 6
−1 −3 2 0

 .

Which row operation is the best choice for the next move in converting to
RREF?

A. Add row 1 to row 3 (R3 +R1 → R3)

B. Add -2 row 1 to row 2 (R2 − 2R1 → R2)

C. Add 2 row 2 to row 3 (R3 + 2R2 → R3)

D. Add 2 row 3 to row 2 (R2 + 2R3 → R2)
Activity 1.2.12 Consider the matrix 1 3 −1 2

0 0 1 2
0 0 1 2

 .

Which row operation is the best choice for the next move in converting to
RREF?

A. Add row 1 to row 2 (R2 +R1 → R2)

B. Add -1 row 3 to row 2 (R2 −R3 → R2)

C. Add -1 row 2 to row 3 (R3 −R2 → R3)

D. Add row 2 to row 1 (R1 +R2 → R1)
Activity 1.2.13 Consider the matrix 2 1 0

1 0 0
3 −1 1

 .
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(a) Perform three row operations to produce a matrix closer to RREF.

(b) Finish putting it in RREF.
Activity 1.2.14 Consider the matrix

A =

 2 3 2 3
−2 1 6 1
−1 −3 −4 1

 .

Compute RREF(A).
Activity 1.2.15 Consider the matrix

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Compute RREF(A).
Activity 1.2.16 Consider the matrix

B =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

which has the same terms as A from the previous activity.
Can RREF(A) be used to find RREF(B)?

A. No, a new calculuation is required.

B. Yes, RREF(A) and RREF(B) are exactly the same.

C. Yes, RREF(A) may be slightly modified to find RREF(B).
Activity 1.2.17 Free browser-based technologies for mathematical computa-
tion are available online.

• Go to https://sagecell.sagemath.org/.

• In the dropdown on the right, you can select a number of different lan-
guages. Select ”Octave” for the Matlab-compatible syntax used by this
text.

• Type rref([1,3,2;2,5,7]) and then press the Evaluate button to com-

pute the RREF of
[

1 3 2
2 5 7

]
.

Activity 1.2.18 In the HTML version of this text, code cells are often embed-
ded for your convenience when RREFs need to be computed.

Try this out to compute RREF
[

2 3 1
3 0 6

]
.

rref ([2 ,3,1;3,0 ,6])

https://sagecell.sagemath.org/


CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS (LE) 11

1.2.2 Videos

Interactive1

Figure 2 Video: Row reduction

1.2.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/LE2.slides.html.

1.2.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/LE2/.

1.2.5 Mathematical Writing Explorations
Exploration 1.2.19 Prove that Gauss-Jordan Elimination preserves the solu-
tion set of a system of linear equations in n variables. Make sure your proof
includes each of the following. Just because I’ve used bullet points here does
not mean you should use bullet points in your proof.

• Write an arbitrary system of linear equations in n variables. Your nota-
tion should be unambiguous.

• Label an element of your solution set. You won’t know what it is exactly,
so you’ll have to use a variable. Remember what it means (by definition!)
to be in the solution set.

• Describe the three operations used in Gauss-Jordan Elimination.

• Consider all three operations in Gauss-Jordan Elimination. After each
one is used, show that the element of the solution set you picked still
satisfies the definition.

Exploration 1.2.20 Let M2,2 indicate the set of all 2× 2 matrices with real
entries. Show that equivalence of matrices as defined in this section is an
equivalence relation, as in exploration Exploration 1.1.17

1.2.6 Sample Problem and Solution
Sample problem Example B.1.2.

1www.youtube.com/watch?v=6iGMPpD9Mf8

https://www.youtube.com/watch?v=6iGMPpD9Mf8
https://teambasedinquirylearning.github.io/linear-algebra/2023/LE2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/LE2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE2/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE2/
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1.3 Counting Solutions for Linear Systems (LE3)

Learning Outcomes
• Determine the number of solutions for a system of linear equations or a

vector equation.

1.3.1 Class Activities
Remark 1.3.1 We will frequently need to know the reduced row echelon form
of matrices during the remainder of this course, so unless you’re told otherwise,
feel free to use technology (see Activity 1.2.17) to compute RREFs efficiently.
Activity 1.3.2 Consider the following system of equations.

3x1 − 2x2 +13x3 = 6

2x1 − 2x2 +10x3 = 2

−x1 +3x2 − 6x3 =11.

(a) Convert this to an augmented matrix and use technology to compute its
reduced row echelon form:

RREF

 ? ? ? ?
? ? ? ?
? ? ? ?

 =

 ? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original

system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many

rref([3,-2,13,6;2,-2,10,2;-1,3,-6,11])

Activity 1.3.3 Consider the vector equation

x1

 3
2
−1

+ x2

 −2
−2
0

+ x3

 13
10
−3

 =

 6
2
1


(a) Convert this to an augmented matrix and use technology to compute its

reduced row echelon form:

RREF

 ? ? ? ?
? ? ? ?
? ? ? ?

 =

 ? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original

system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many
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rref([3,-2,13,6;2,-2,10,2;-1,0,-3,1])

Activity 1.3.4 What contradictory equations besides 0 = 1 may be obtained
from the RREF of an augmented matrix?

A. x = 0 is an obtainable contradiction

B. x = y is an obtainable contradiction

C. 0 = 17 is an obtainable contradiction

D. 0 = 1 is the only obtainable contradiction
Activity 1.3.5 Consider the following linear system.

x1 + 2x2+3x3 = 1

2x1 + 4x2+8x3 = 0

(a) Find its corresponding augmented matrix A and find RREF(A).

(b) Use the RREF matrix to write a linear system equivalent to the original
system.

(c) How many solutions must this system have?

A. Zero B. One C. Infinitely-many
Fact 1.3.6 We will see in Section 1.4 that the intuition established here gener-
alizes: a consistent system with more variables than equations (ignoring 0 = 0)
will always have infinitely many solutions.
Fact 1.3.7 By finding RREF(A) from a linear system’s corresponding aug-
mented matrix A, we can immediately tell how many solutions the system has.

• If the linear system given by RREF(A) includes the contradiction 0 = 1,
that is, the row

[
0 · · · 0 1

]
, then the system is inconsistent, which

means it has zero solutions and its solution set is written as ∅ or {}.

• If the linear system given by RREF(A) sets each variable of the system
to a single value; that is, x1 = s1, x2 = s2, and so on; then the system

is consistent with exactly one solution

 s1
s2
...

, and its solution set is


 s1

s2
...


.

• Otherwise, the system must have more variables than non-trivial equa-
tions (equations other than 0 = 0). This means it is consistent with
infinitely-many different solutions. We’ll learn how to find such solution
sets in Section 1.4.

Activity 1.3.8 For each vector equation, write an explanation for whether
each solution set has no solutions, one solution, or infinitely-many solutions. If
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the set is finite, describe it using set notation.
(a)

x1

 1
−1
1

+ x2

 4
−3
1

+ x3

 7
−6
4

 =

 10
−6
4


(b)

x1

 −2
−1
−2

+ x2

 3
1
1

+ x3

 −2
−2
−5

 =

 1
4
13


(c)

x1

 −1
−2
1

+ x2

 −5
−5
4

+ x3

 −7
−9
6

 =

 3
1
−2


1.3.2 Videos

Interactive1

Figure 3 Video: Finding the number of solutions for a system

1.3.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/LE3.slides.html.

1.3.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/LE3/.

1.3.5 Mathematical Writing Explorations
Exploration 1.3.9 A system of equations with all constants equal to 0 is
called homogeneous. These are addressed in detail in section Section 2.7

• Choose three systems of equations from this chapter that you have al-
ready solved. Replace the constants with 0 to make the systems homoge-
neous. Solve the homogeneous systems and make a conjecture about the
relationship between the earlier solutions you found and the associated
homogeneous systems.

• Prove or disprove. A system of linear equations is homogeneous if an
only if it has the the zero vector as a solution.

1www.youtube.com/watch?v=tkRKPBtkJcw

https://www.youtube.com/watch?v=tkRKPBtkJcw
https://teambasedinquirylearning.github.io/linear-algebra/2023/LE3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/LE3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE3/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE3/
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1.3.6 Sample Problem and Solution
Sample problem Example B.1.3.

1.4 Linear Systems with Infinitely-Many Solutions
(LE4)

Learning Outcomes
• Compute the solution set for a system of linear equations or a vector

equation with infinitly many solutions.

1.4.1 Class Activities
Activity 1.4.1 Consider this simplified linear system found to be equivalent
to the system from Activity 1.3.5:

x1 + 2x2 = 4

x3 = −1

Earlier, we determined this system has infinitely-many solutions.

(a) Let x1 = a and write the solution set in the form


 a

?
?

 ∣∣∣∣∣∣ a ∈ R

.

(b) Let x2 = b and write the solution set in the form


 ?

b
?

 ∣∣∣∣∣∣ b ∈ R

.

(c) Which of these was easier? What features of the RREF matrix
[

1 2 0 4

0 0 1 −1

]
caused this?

Definition 1.4.2 Recall that the pivots of a matrix in RREF form are the
leading 1s in each non-zero row.

The pivot columns in an augmented matrix correspond to the bound vari-
ables in the system of equations (x1, x3 below). The remaining variables are
called free variables (x2 below).[

1 2 0 4

0 0 1 −1

]

To efficiently solve a system in RREF form, assign letters to the free variables,
and then solve for the bound variables. ♢
Activity 1.4.3 Find the solution set for the system

2x1 − 2x2 − 6x3 +x4 − x5 = 3

−x1 + x2 +3x3 −x4 +2x5 =−3

x1 − 2x2 − x3 +x4 + x5 = 2

by doing the following.
(a) Row-reduce its augmented matrix.

(b) Assign letters to the free variables (given by the non-pivot columns):
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? = a and ? = b.

(c) Solve for the bound variables (given by the pivot columns) to show that
? = 1 + 5a+ 2b,
? = 1 + 2a+ 3b,
and ? = 3 + 3b.

(d) Replace x1 through x5 with the appropriate expressions of a, b in the
following set-builder notation.


x1

x2

x3

x4

x5


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R


Remark 1.4.4 Don’t forget to correctly express the solution set of a linear
system. Systems with zero or one solutions may be written by listing their
elements, while systems with infinitely-many solutions may be written using
set-builder notation.

• Inconsistent: ∅ or {} (not 0).

• Consistent with one solution: e.g.


 1

2
3

 (not just

 1
2
3

).

• Consistent with infinitely-many solutions: e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


(not just

 1
2− 3a

a

 ).

Activity 1.4.5 Show how to find the solution set for the vector equation

x1

 1
0
1

+ x2

 0
1
−1

+ x3

 −1
5
−5

+ x4

 −3
13
−13

 =

 −3
12
−12

 .

Activity 1.4.6 Consider the following system of linear equations.

x1 − 2x3 = −3
5x1 + x2 − 7x3 = −18
5x1 − x2 − 13x3 = −12
x1 + 3x2 + 7x3 = −12

(a) Explain how to find a simpler system or vector equation that has the
same solution set.

(b) Explain how to describe this solution set using set notation.
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1.4.2 Videos

Interactive1

Figure 4 Video: Solving a system of linear equations with infinitely-many
solutions

1.4.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023LE4.slides.html.

1.4.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/LE4/.

1.4.5 Mathematical Writing Explorations
Exploration 1.4.7 Construct a system of 3 equations in 3 variables having:

• 0 free variables

• 1 free variable

• 2 free variables

In each case, solve the system you have created. Conjecture a relationship
between the number of free variables and the type of solution set that can be
obtained from a given system.
Exploration 1.4.8 For each of the following, decide if it’s true or false. If you
think it’s true, can we construct a proof? If you think it’s false, can we find a
counterexample?

• If the coefficient matrix of a system of linear equations has a pivot in the
rightmost column, then the system is inconsistent.

• If a system of equations has two equations and four unknowns, then it
must be consistent.

• If a system of equations having four equations and three unknowns is
consistent, then the solution is unique.

• Suppose that a linear system has four equations and four unknowns and
that the coefficient matrix has four pivots. Then the linear system is
consistent and has a unique solution.

• Suppose that a linear system has five equations and three unknowns and
1www.youtube.com/watch?v=_ievdPswLoE

https://www.youtube.com/watch?v=_ievdPswLoE
https://teambasedinquirylearning.github.io/linear-algebra/2023LE4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023LE4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE4/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/LE4/
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that the coefficient matrix has a pivot in every column. Then the linear
system is consistent and has a unique solution.

1.4.6 Sample Problem and Solution
Sample problem Example B.1.4.



Chapter 2

Euclidean Vectors (EV)

Learning Outcomes
What is a space of Euclidean vectors?

By the end of this chapter, you should be able to...

1. Determine if a Euclidean vector can be written as a linear combination of
a given set of Euclidean vectors by solving an appropriate vector equation.

2. Determine if a set of Euclidean vectors spans Rn by solving appropriate
vector equations.

3. Determine if a subset of Rn is a subspace or not.

4. Determine if a set of Euclidean vectors is linearly dependent or indepen-
dent by solving an appropriate vector equation.

5. Explain why a set of Euclidean vectors is or is not a basis of Rn.

6. Compute a basis for the subspace spanned by a given set of Euclidean
vectors, and determine the dimension of the subspace.

7. Find a basis for the solution set of a homogeneous system of equations.

Readiness Assurance. Before beginning this chapter, you should be able
to...

1. Use set builder notation to describe sets of vectors.

• Review: YouTube1

2. Add Euclidean vectors and multiply Euclidean vectors by scalars.

• Review: Khan Academy (1)2 (2)3

3. Perform basic manipulations of augmented matrices and linear systems.

• Review: Section 1.1, Section 1.2, Section 1.3

1youtu.be/xnfUZ-NTsCE
2www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/

adding-vectors
3www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/

multiplying-vector-by-scalar

19

https://youtu.be/xnfUZ-NTsCE
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/adding-vectors
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/multiplying-vector-by-scalar
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2.1 Linear Combinations (EV1)

Learning Outcomes
• Determine if a Euclidean vector can be written as a linear combination of

a given set of Euclidean vectors by solving an appropriate vector equation.

2.1.1 Class Activities
Note 2.1.1 We’ve implicitly been working with Euclidean vector spaces of
the form

Rn =




x1

x2

...
xn


∣∣∣∣∣∣∣∣∣x1, x2, . . . , xn ∈ R

 .

There are other kinds of vector spaces as well (e.g. polynomials, matrices),
which we will investigate in Section 3.5. But understanding the structure
of Euclidean vectors on their own will be beneficial, even when we turn our
attention to other kinds of vectors.

Likewise, when we multiply a vector by a real number, as in −3

 1
−1
2

 = −3
3
−6

, we refer to this real number as a scalar.

Definition 2.1.2 A linear combination of a set of vectors {v⃗1, v⃗2, . . . , v⃗m} is
given by c1v⃗1+c2v⃗2+· · ·+cmv⃗m for any choice of scalar multiples c1, c2, . . . , cm.

For example, we can say

 3
0
5

 is a linear combination of the vectors 1
−1
2

 and

 1
2
1

 since

 3
0
5

 = 2

 1
−1
2

+ 1

 1
2
1

 .

♢
Definition 2.1.3 The span of a set of vectors is the collection of all linear
combinations of that set:

span{v⃗1, v⃗2, . . . , v⃗m} = {c1v⃗1 + c2v⃗2 + · · ·+ cmv⃗m | ci ∈ R} .

For example:

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R

 .

♢
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Remark 2.1.4 It is important to remember that

{v⃗1, v⃗2, . . . , v⃗m} 6= span{v⃗1, v⃗2, . . . , v⃗m}.

For example, 
 1

−1
2

 ,

 1
2
1


is a set containing exactly two vectors, while

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R


is a set containing infinitely-many vectors.

Activity 2.1.5 Consider span
{[

1
2

]}
.

(a) Sketch the four Euclidean vectors

1

[
1
2

]
=

[
1
2

]
, 3

[
1
2

]
=

[
3
6

]
, 0

[
1
2

]
=

[
0
0

]
, −2

[
1
2

]
=

[
−2
−4

]
in the xy plane by placing a dot at the (x, y) coordinate associated with
each vector.

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane by plotting their (x, y) coordinates as dots. What best
describes this sketch?

A. A line B. A plane C. A parabola D. A circle

Activity 2.1.6 Consider span
{[

1
2

]
,

[
−1
1

]}
.

(a) Sketch the following five Euclidean vectors in the xy plane.

1

[
1
2

]
+0

[
−1
1

]
= ? 0

[
1
2

]
+1

[
−1
1

]
= ? 1

[
1
2

]
+1

[
−1
1

]
= ?

−2

[
1
2

]
+ 1

[
−1
1

]
= ? − 1

[
1
2

]
+−2

[
−1
1

]
= ?

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]
,

[
−1
1

]}
=

{
a

[
1
2

]
+ b

[
−1
1

] ∣∣∣∣ a, b ∈ R
}

in the xy plane. What best describes this sketch?

A. A line B. A plane C. A parabola D. A circle

Activity 2.1.7 Sketch a representation of all the vectors belonging to span
{[

6
−4

]
,

[
−3
2

]}
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in the xy plane. What best describes this sketch?
A. A line

B. A plane

C. A parabola

D. A cube
Activity 2.1.8 Consider the following questions to discover whether a Eu-
clidean vector belongs to a span.

(a) The Euclidean vector

 −1
−6
1

 belongs to span


 1

0
−3

 ,

 −1
−3
2

 ex-

actly when there exists a solution to which of these vector equations?

A. x1

 −1
−6
1

+ x2

 1
0
−3

 =

 −1
−3
2


B. x1

 1
0
−3

+ x2

 −1
−3
2

 =

 −1
−6
1


C. x1

 −1
−3
2

+ x2

 −1
−6
1

+ x3

 1
0
−3

 = 0

(b) Use technology to find RREF of the corresponding augmented matrix,
and then use that matrix to find the solution set of the vector equation.

(c) Given this solution set, does

 −1
−6
1

 belong to span


 1

0
−3

 ,

 −1
−3
2

?

Observation 2.1.9 The following are all equivalent statements:
• The vector b⃗ belongs to span{v⃗1, . . . , v⃗n}.

• The vector b⃗ is a linear combination of the vectors v⃗1, . . . , v⃗n.

• The vector equation x1v⃗1 + · · ·+ xnv⃗n = b⃗ is consistent.

• The linear system corresponding to
[
v⃗1 . . . v⃗n | b⃗

]
is consistent.

• RREF
[
v⃗1 . . . v⃗n | b⃗

]
doesn’t have a row [0 · · · 0 | 1] representing the con-

tradiction 0 = 1.
Activity 2.1.10 Consider this claim about a vector equation: −6

2
−6

is a linear combination of the vectors

 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s
equivalent to this claim.

(b) Explain why the statement you wrote is true.

(c) Since your statement was true, use the solution set to describe a linear
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combination of

 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

 that equals

 −5
−1
−7

.

Activity 2.1.11 Consider this claim about a vector equation: −5
−1
−7

 belongs to span


 1

0
2

 ,

 3
0
6

 ,

 2
0
4

 ,

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s
equivalent to this claim.

(b) Explain why the statement you wrote is false, to conclude that the vector
does not belong to the span.

2.1.2 Videos

Interactive1

Figure 5 Video: Linear combinations

2.1.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV1.slides.html.

2.1.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV1/.

2.1.5 Mathematical Writing Explorations
Exploration 2.1.12 Suppose S = {v⃗1, . . . , v⃗n} is a set of vectors. Show that
v⃗0 is a linear combination of members of S, if an only if there are a set of
scalars {c0, c1, . . . , cn} such that z⃗ = c0v⃗0 + · · ·+ cnv⃗n. We can do this in a few
parts. I’ve used bullets here to indicate all that needs to be done. This is an
”if and only if” proof, so it needs two parts.

• First, assume that 0⃗ = c0v⃗0+ · · ·+cnv⃗n has a solution, with c0 6= 0. Show
that v⃗0 is a linear combination of elements of S.

• Next, assume that v⃗0 is a linear combination of elements of S. Can you
find the appropriate {c0, c1, . . . , cn} to make the equation z⃗ = c0v⃗0+ · · ·+
cnv⃗n true?

• In either of your proofs above, does the case when v⃗0 = z⃗ change your
1www.youtube.com/watch?v=wkLa08LwSNs

https://www.youtube.com/watch?v=wkLa08LwSNs
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV1/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV1/
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thinking? Explain why or why not.

2.1.6 Sample Problem and Solution
Sample problem Example B.1.5.

2.2 Spanning Sets (EV2)

Learning Outcomes
• Determine if a set of Euclidean vectors spans Rn by solving appropriate

vector equations.

2.2.1 Class Activities
Observation 2.2.1 Any single non-zero vector/number x in R1 spans R1,
since R1 = {cx | c ∈ R}.

x0

Figure 6 An R1 vector

Activity 2.2.2 How many vectors are required to span R2? Sketch a drawing
in the xy plane to support your answer.

Figure 7 The xy plane R2

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many
Activity 2.2.3 How many vectors are required to span R3?
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Figure 8 R3 space

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many
Fact 2.2.4 At least n vectors are required to span Rn.

Figure 9 Failed attempts to span Rn by < n vectors

Activity 2.2.5 Consider the question: Does every vector in R3 belong to

span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

?

(a) Determine if

 7
−3
−2

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(b) Determine if

 2
5
7

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(c) An arbitrary vector

 ?
?
?

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2


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provided the equation

x1

 1
−1
0

+ x2

 −2
0
1

+ x3

 −2
−2
2

 =

 ?
?
?


has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(d) We’re guaranteed at least one solution if the RREF of the corresponding
augmented matrix has no contradictions; likewise, we have no solutions
if the RREF corresponds to the contradiction 0 = 1. Given 1 −2 −2 ?

−1 0 −2 ?
0 1 2 ?

 ∼

 1 0 2 ?
0 1 2 ?
0 0 0 ?


we may conclude that the set does not span all of R3 because...

A. the row [0 1 2 | ? ] prevents a contradiction.
B. the row [0 1 2 | ? ] allows a contradiction.
C. the row [0 0 0 | ? ] prevents a contradiction.
D. the row [0 0 0 | ? ] allows a contradiction.

Fact 2.2.6 The set {v⃗1, . . . , v⃗m} spans all of Rn exactly when the vector equa-
tion

x1v⃗1 + · · ·xmv⃗m = w⃗

is consistent for every vector w⃗.
Likewise, the set {v⃗1, . . . , v⃗m} fails to span all of Rn exactly when the vector

equation
x1v⃗1 + · · ·xmv⃗m = w⃗

is inconsistent for some vector w⃗.
Note these two possibilities are decided based on whether or not RREF[v⃗1 . . . v⃗m]

has either all pivot rows, or at least one non-pivot row (a row of zeroes): 1 −2 −2
−1 0 −2
0 1 2

 ∼

 1 0 2
0 1 2
0 0 0

 .

Activity 2.2.7 Consider the set of vectors S =




2
3
0
−1

 ,


1
−4
3
0

 ,


1
7
−3
−1

 ,


0
3
5
7

 ,


3
13
7
16




and the question “Does R4 = spanS?”
(a) Rewrite this question in terms of the solutions to a vector equation.

(b) Answer your new question, and use this to answer the original question.

Activity 2.2.8 Let v⃗1, v⃗2, v⃗3 ∈ R7 be three Euclidean vectors, and suppose
w⃗ is another vector with w⃗ ∈ span {v⃗1, v⃗2, v⃗3}. What can you conclude about
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span {w⃗, v⃗1, v⃗2, v⃗3}?
A. span {w⃗, v⃗1, v⃗2, v⃗3} is larger than span {v⃗1, v⃗2, v⃗3}.

B. span {w⃗, v⃗1, v⃗2, v⃗3} is the same as span {v⃗1, v⃗2, v⃗3}.

C. span {w⃗, v⃗1, v⃗2, v⃗3} is smaller than span {v⃗1, v⃗2, v⃗3}.

2.2.2 Videos

Interactive1

Figure 10 Video: Determining if a set spans a Euclidean space

2.2.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV2.slides.html.

2.2.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV2/.

2.2.5 Mathematical Writing Explorations
Exploration 2.2.9 Construct each of the following, or show that it is impos-
sible:

• A set of 2 vectors that spans R3

• A set of 3 vectors that spans R3

• A set of 3 vectors that does not span R3

• A set of 4 vectors that spans R3

For any of the sets you constructed that did span the required space, are any
of the vectors a linear combination of the others in your set?
Exploration 2.2.10 Based on these results, generalize this a conjecture about
how a set of n− 1, n and n+ 1 vectors would or would not span Rn.

2.2.6 Sample Problem and Solution
Sample problem Example B.1.6.

1www.youtube.com/watch?v=Mr8LJAPwp1E

https://www.youtube.com/watch?v=Mr8LJAPwp1E
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV2/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV2/
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2.3 Subspaces (EV3)

Learning Outcomes
• Determine if a subset of Rn is a subspace or not.

2.3.1 Class Activities
Definition 2.3.1 A subset S of a vector space is called a subspace provided
it is equal to the span of a set of vectors from that space. ♢
Activity 2.3.2 Consider two non-colinear vectors in R3. If we look at all
linear combinations of those two vectors (that is, their span), we end up with
a planar subspace within R3. Call this plane S.

(a) For any unspecified u⃗, v⃗ ∈ S, is it the case that u⃗+ v⃗ ∈ S?

A. Yes. B. No.

(b) For any unspecified u⃗ ∈ S and c ∈ R, is it the case that u⃗+

 c
c
c

 ∈ S?

A. Yes. B. No.

(c) For any unspecified u⃗ ∈ S and c ∈ R, is it the case that cu⃗ ∈ S?

A. Yes. B. No.
Fact 2.3.3 A subset S of a vector space is a subspace provided:

• the subset is closed under addition: for any u⃗, v⃗ ∈ S, the sum u⃗ + v⃗
is also in S.

• the subset is closed under scalar multiplication: for any u⃗ ∈ S and
scalar c ∈ R, the product cu⃗ is also in S.

Observation 2.3.4 Note the similarities between a planar subspace spanned
by two non-colinear vectors in R3, and the Euclidean plane R2. While they are
not the same thing (and shouldn’t be referred to interchangably), algebraists
call such similar spaces isomorphic; we’ll learn what this means more carefully
in a later chapter.
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Figure 11 A planar subset of R3 compared with the plane R2.

Activity 2.3.5 Let S =


 x

y
z

 ∣∣∣∣∣∣x+ 2y + z = 0

.

(a) Let’s assume that v⃗ =

 x
y
z

 and w⃗ =

 a
b
c

 are in S. What are we

allowed to assume?

A. x+ 2y + z = 0.
B. a+ 2b+ c = 0.

C. Both of these.
D. Neither of these.

(b) Which equation must be verified to show that v⃗ + w⃗ =

 x+ a
y + b
z + c

 also

belongs to S?

A. (x+ a) + 2(y + b) + (z + c) = 0.
B. x+ a+ 2y + b+ z + c = 0.
C. x+ 2y + z = a+ 2b+ c.

(c) Use the assumptions from (a) to verify the equation from (b).

(d) Is S is a subspace of R3?

A. Yes B. No C. Not enough infor-
mation

(e) Show that kv⃗ =

 kx
ky
kz

 also belongs to S for any k ∈ R by verifying

(kx) + 2(ky) + (kz) = 0 under these assumptions.

(f) Is S is a subspace of R3?

A. Yes B. No C. Not enough infor-
mation

Activity 2.3.6 Let S =


 x

y
z

 ∣∣∣∣∣∣x+ 2y + z = 4

.

(a) Which of these statements is valid?
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A.

 1
1
1

 ∈ S, and

 2
2
2

 ∈ S, so S is a subspace.

B.

 1
1
1

 ∈ S, and

 2
2
2

 ∈ S, so S is not a subspace.

C.

 1
1
1

 ∈ S, but

 2
2
2

 6∈ S, so S is a subspace.

D.

 1
1
1

 ∈ S, but

 2
2
2

 6∈ S, so S is not a subspace.

(b) Which of these statements is valid?

(a)

 1
1
1

 ∈ S, and

 0
0
0

 ∈ S, so S is a subspace.

(b)

 1
1
1

 ∈ S, and

 0
0
0

 ∈ S, so S is not a subspace.

(c)

 1
1
1

 ∈ S, but

 0
0
0

 6∈ S, so S is a subspace.

(d)

 1
1
1

 ∈ S, but

 0
0
0

 6∈ S, so S is not a subspace.

Remark 2.3.7 In summary, you can check any of the following to show that
a nonempty subset W isn’t a subspace:

• Find u⃗, v⃗ ∈ W such that u⃗+ v⃗ 6∈ W .

• Find c ∈ R, v⃗ ∈ W such that cv⃗ 6∈ W .

• Show that 0⃗ 6∈ W (same as the last step, with c = 0).

If you cannot do any of these, then W can be proven to be a subspace by
doing both of the following:

1. Prove that u⃗+ v⃗ ∈ W whenever u⃗, v⃗ ∈ W .

2. Prove that cv⃗ ∈ W whenever c ∈ R, v⃗ ∈ W .

Activity 2.3.8 Consider these subsets of R3:

R =


 x

y
z

 ∣∣∣∣∣∣ y = z + 1

 S =


 x

y
z

 ∣∣∣∣∣∣ y = |z|

 T =


 x

y
z

 ∣∣∣∣∣∣ z = xy

 .

(a) Show R isn’t a subspace by showing that 0⃗ 6∈ R.

(b) Show S isn’t a subspace by finding two vectors u⃗, v⃗ ∈ S such that u⃗+ v⃗ 6∈
S.

(c) Show T isn’t a subspace by finding a vector v⃗ ∈ T such that 2v⃗ 6∈ T .
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Activity 2.3.9 Consider the following two sets of Euclidean vectors:

U =

{[
x
y

]∣∣∣∣ 7x+ 4 y = 0

}
W =

{[
x
y

]∣∣∣∣ 3xy2 = 0

}
Explain why one of these sets is a subspace of R2 and one is not.

Activity 2.3.10 Consider the following attempted proof that

U =

{[
x
y

]∣∣∣∣x+ y = xy

}
is closed under scalar multiplication.

Let
[

x
y

]
∈ U , so we know that x + y = xy. We want to show

k

[
x
y

]
=

[
kx
ky

]
∈ U , that is, (kx) + (ky) = (kx)(ky). This is

verified by the following calculation:

(kx) + (ky) = (kx)(ky)

k(x+ y) = k2xy

0[k(x+ y)] = 0[k2xy]

0 = 0

Is this reasoning valid?

A. Yes B. No
Remark 2.3.11 Proofs of an equality LEFT = RIGHT should generally be of
one of these forms:

1. Using a chain of equalities:

LEFT = · · ·
= · · ·
= · · ·
= RIGHT

Alternatively:

LEFT = · · · RIGHT = · · ·
= · · · = · · ·
= · · · = · · ·
= SAME = SAME

2. When the assumption THIS = THAT is already known or assumed to
be true :

THIS = THAT
⇒ · · · = · · ·
⇒ · · · = · · ·
⇒ LEFT = RIGHT
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Warning 2.3.12 The following proof is invalid.

LEFT = RIGHT
⇒ · · · = · · ·
⇒ · · · = · · ·
⇒ 0 = 0

⇒ ANYTHING = ANYTHING

Basically, you cannot prove something is true by assuming it’s true, and it’s
not helpful to prove to someone that zero equals itself (they probably already
know that).

2.3.2 Videos

Interactive1

Figure 12 Video: Showing that a subset of a vector space is a subspace

Interactive2

Figure 13 Video: Showing that a subset of a vector space is not a subspace

2.3.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV3.slides.html.

2.3.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV3/.

1www.youtube.com/watch?v=ccXgu4NIzSA
2www.youtube.com/watch?v=7qv8-2GaE2A

https://www.youtube.com/watch?v=ccXgu4NIzSA
https://www.youtube.com/watch?v=7qv8-2GaE2A
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV3/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV3/
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2.3.5 Mathematical Writing Explorations
Exploration 2.3.13 A square matrix M is symmetricif, for each index i, j,
the entries mij = mji. That is, the matrix is itself when reflected over the
diagonal from upper left to lower right. Prove that the set of n× n symmetric
matrices is a subspace of Mn×n.
Exploration 2.3.14 The space of all real-valued function of one real variable
is a vector space. First, define ⊕ and � for this vector space. Check that you
have closure (both kinds!) and show what the zero vector is under your chosen
addition. Decide if each of the following is a subspace. If so, prove it. If not,
provide the counterexample.

• The set of even functions, {f : R → R : f(−x) = f(x) for all x}.

• The set of odd functions, {f : R → R : f(−x) = −f(x) for all x}.
Exploration 2.3.15 Give an example of each of these, or explain why it’s not
possible that such a thing would exist.

• A nonempty subset of M2×2 that is not a subspace.

• A set of two vectors in R2 that is not a spanning set.
Exploration 2.3.16 Let V be a vector space and S = {v⃗1, v⃗2, . . . , v⃗n} a subset
of V . Show that the span of S is a subspace. Is it possible that there is a subset
of V containing fewer vectors than S, but whose span contains all of the vectors
in the span of S?

2.3.6 Sample Problem and Solution
Sample problem Example B.1.7.

2.4 Linear Independence (EV4)

Learning Outcomes
• Determine if a set of Euclidean vectors is linearly dependent or indepen-

dent by solving an appropriate vector equation.

2.4.1 Class Activities
Activity 2.4.1 Consider the two sets

S =


 2

3
1

 ,

 1
1
4

 T =


 2

3
1

 ,

 1
1
4

 ,

 −1
0

−11

 .

Which of the following is true?
A. spanS is bigger than spanT .

B. spanS and spanT are the same size.

C. spanS is smaller than spanT .
Definition 2.4.2 We say that a set of vectors is linearly dependent if one
vector in the set belongs to the span of the others. Otherwise, we say the set
is linearly independent.
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Figure 14 A linearly dependent set of three vectors
You can think of linearly dependent sets as containing a redundant vector,

in the sense that you can drop a vector out without reducing the span of the
set. In the above image, all three vectors lay in the same planar subspace, but
only two vectors are needed to span the plane, so the set is linearly dependent.

♢
Activity 2.4.3 Consider the following three vectors in R3:

v⃗1 =

 −2
0
0

 , v⃗2 =

 1
3
0

 , and v⃗3 =

 −2
5
4

 .

(a) Let w⃗ = 3v⃗1 − v⃗2 − 5v⃗3 =

 ?
?
?

. The set {v⃗1, v⃗2, v⃗3, w⃗} is...

A. linearly dependent: at least one vector is a linear combination of
others

B. linearly independent: no vector is a linear combination of others

(b) Find

RREF
[
v⃗1 v⃗2 v⃗3 w⃗

]
= RREF

 −2 1 −2 ?
0 3 5 ?
0 0 4 ?

 = ? .

What does this tell you about solution set for the vector equation x1v⃗1 +
x2v⃗2 + x3v⃗3 + x4w⃗ = 0⃗?

A. It is inconsistent.
B. It is consistent with one solution.
C. It is consistent with infinitely many solutions.

(c) Which of these might explain the connection?

A. A pivot column establishes linear independence and creates a con-
tradiction.
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B. A non-pivot column both describes a linear combination and reveals
the number of solutions.

C. A pivot row describes the bound variables and prevents a contradic-
tion.

D. A non-pivot row prevents contradictions and makes the vector equa-
tion solvable.

Fact 2.4.4 For any vector space, the set {v⃗1, . . . v⃗n} is linearly dependent if
and only if the vector equation x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗ is consistent with
infinitely many solutions.

Likewise, the set of vectors {v⃗1, . . . v⃗n} is linearly independent if and only
the vector equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0

has exactly one solution:

 x1

...
xn

 =

 0
...
0

.

Activity 2.4.5 Find

RREF


2 2 3 −1 4 0
3 0 13 10 3 0
0 0 7 7 0 0
−1 3 16 14 1 0


and mark the part of the matrix that demonstrates that

S =




2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
1




is linearly dependent (the part that shows its linear system has infinitely many
solutions).
Observation 2.4.6 Compare the following results:

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly independent if and only if
RREF

[
v⃗1 . . . v⃗n

]
has all pivot columns.

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly dependent if and only if
RREF

[
v⃗1 . . . v⃗n

]
has at least one non-pivot column.

• A set of Rm vectors {v⃗1, . . . v⃗n} spans Rm if and only if RREF
[
v⃗1 . . . v⃗n

]
has all pivot rows.

• A set of Rm vectors {v⃗1, . . . v⃗n} fails to span Rm if and only if RREF
[
v⃗1 . . . v⃗n

]
has at least one non-pivot row.

Activity 2.4.7
(a) Write a statement involving the solutions of a vector equation that’s

equivalent to each claim:

(i) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
3


 is linearly indepen-

dent.”
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(ii) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
3


 is linearly depen-

dent.”

(b) Explain how to determine which of these statements is true.

Activity 2.4.8 What is the largest number of R4 vectors that can form a
linearly independent set?

A. 3

B. 4

C. 5

D. You can have infinitely many
vectors and still be linearly inde-
pendent.

Activity 2.4.9 Is is possible for the set of Euclidean vectors {v⃗1, v⃗2, . . . , v⃗n, 0⃗}
to be linearly independent?

A. Yes B. No

2.4.2 Videos

Interactive1

Figure 15 Video: Linear independence

2.4.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV4.slides.html.

2.4.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV4/.

2.4.5 Mathematical Writing Explorations
Exploration 2.4.10 Prove the result of Observation 2.4.6, by showing that,
given a set S = {v⃗1, v⃗2, . . . , v⃗n} of vectors, S is linearly independent iff the
equation x1v⃗1+x2v⃗2+. . . +xnv⃗n = 0⃗ is only true when x1 = x2 = · · · = xn = 0.

2.4.6 Sample Problem and Solution
Sample problem Example B.1.8.

1www.youtube.com/watch?v=EZ9BX1z-H4Y

https://www.youtube.com/watch?v=EZ9BX1z-H4Y
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV4/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV4/


CHAPTER 2. EUCLIDEAN VECTORS (EV) 37

2.5 Identifying a Basis (EV5)

Learning Outcomes
• Explain why a set of Euclidean vectors is or is not a basis of Rn.

2.5.1 Class Activities
Activity 2.5.1 Consider the set of vectors

S =




3
−2
−1
0

 ,


2
4
1
1

 ,


0

−16
−5
−3

 ,


1
2
3
0

 ,


3
3
0
1


 .

(a) Express the vector


5
2
0
1

 as a linear combination of the vectors in S, i.e.

find scalars such that
5
2
0
1

 = ?


3
−2
−1
0

+ ?


2
4
1
1

+ ?


0

−16
−5
−3

+ ?


1
2
3
0

+ ?


3
3
0
1

 .

(b) Find a different way to express the vector


5
2
0
1

 as a linear combination

of the vectors in S.

(c) Consider another vector


8
6
7
5

. Without computing the RREF of an-

other matrix, how many ways can this vector be written as a linear com-
bination of the vectors in S?

A. Zero.
B. One.
C. Infintiely-many.
D. Computing a new matrix RREF is necessary.

Activity 2.5.2 Let’s review some of the terminology we’ve been dealing with...
(a) If every vector in a space can be constructed as one or more linear com-

bination of vectors in a set S, we can say...

A. the set S spans the space.
B. the set S fails to span the space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(b) If the zero vector 0⃗ can be constructed as a unique linear combination



CHAPTER 2. EUCLIDEAN VECTORS (EV) 38

of vectors in a set S (the combination multiplying every vector by the
scalar value 0), we can say...

A. the set S spans the space.
B. the set S fails to span the space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(c) If every vector of a space can either be constructed as a unique linear
combination of vectors in a set S, or not at all, we can say...

A. the set S spans the space.
B. the set S fails to span the space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

Definition 2.5.3 A basis of a vector space is a set of vectors S for which
1. Every vector of the space can be expressed as a linear combination of the

vectors in S.

2. For each vector v⃗ in the space, there is only one way to write it as a linear
combination of the vectors in S.

These two properties may be expressed more succintly as the statement ”Every
vector in V can be expressed uniquely as a linear combination of the vectors in
S”. ♢
Observation 2.5.4 In terms of a vector equation, a set S = {v⃗1, . . . , v⃗n} is a
basis of a space if the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

has a unique solution for every vector w⃗ in the space.
Put another way, a basis may be thought of as a minimal set of “building

blocks” that can be used to construct any other vector of the space.
Activity 2.5.5 Let S be a basis (Definition 2.5.3) for a space. Then...

A. the set S must both span the space and be linearly independent.

B. the set S must span the space but could be linearly dependent.

C. the set S must be linearly independent but could fail to span the space.

D. the set S could fail to span the space and could be linearly dependent.
Activity 2.5.6 The vectors

ı̂ = (1, 0, 0) =

 1
0
0

 ȷ̂ = (0, 1, 0) =

 0
1
0

 k̂ = (0, 0, 1) =

 0
0
1


form a basis {ı̂, ȷ̂, k̂} used frequently in multivariable calculus.

Find the unique linear combination of these vectors

? ı̂+ ? ȷ̂+ ? k̂
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that equals the vector

(3,−2, 4) =

 3
−2
4


in xyz space.
Definition 2.5.7 The standard basis of Rn is the set {e⃗1, . . . , e⃗n} where

e⃗1 =



1
0
0
...
0
0


e⃗2 =



0
1
0
...
0
0


· · · e⃗n =



0
0
0
...
0
1


.

In particular, the standard basis for R3 is {e⃗1, e⃗2, e⃗3} = {ı̂, ȷ̂, k̂}. ♢
Activity 2.5.8 Take the RREF of an appropriate matrix to determine if each
of the following sets is a basis for R4.
(a) 


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




A. A basis because it both spans and is linearly independent.
B. Spans, but not a basis as it is linearly dependent.
C. Linearly independent, but not a basis as it fails to span.
D. Fails to span and linearly independent, so not a basis.

(b) 


2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3




A. A basis because it both spans and is linearly independent.
B. Spans, but not a basis as it is linearly dependent.
C. Linearly independent, but not a basis as it fails to span.
D. Fails to span and linearly independent, so not a basis.

(c) 


2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
2




A. A basis because it both spans and is linearly independent.
B. Spans, but not a basis as it is linearly dependent.
C. Linearly independent, but not a basis as it fails to span.
D. Fails to span and linearly independent, so not a basis.
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(d) 


2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5




A. A basis because it both spans and is linearly independent.
B. Spans, but not a basis as it is linearly dependent.
C. Linearly independent, but not a basis as it fails to span.
D. Fails to span and linearly independent, so not a basis.

(e) 


5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3




A. A basis because it both spans and is linearly independent.
B. Spans, but not a basis as it is linearly dependent.
C. Linearly independent, but not a basis as it fails to span.
D. Fails to span and linearly independent, so not a basis.

Activity 2.5.9 If {v⃗1, v⃗2, v⃗3, v⃗4} is a basis for R4, that means RREF[v⃗1 v⃗2 v⃗3 v⃗4]
has a pivot in every row (because it spans), and has a pivot in every column
(because it’s linearly independent).

What is RREF[v⃗1 v⃗2 v⃗3 v⃗4]?

RREF[v⃗1 v⃗2 v⃗3 v⃗4] =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


Fact 2.5.10 The set {v⃗1, . . . , v⃗m} is a basis for Rn if and only if m = n and

RREF[v⃗1 . . . v⃗n] =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

.

That is, a basis for Rn must have exactly n vectors and its square matrix
must row-reduce to the so-called identity matrix containing all zeros except
for a downward diagonal of ones. (We will learn where the identity matrix gets
its name in a later module.)
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2.5.2 Videos

Interactive1

Figure 16 Video: Verifying that a set of vectors is a basis of a vector space

2.5.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV5.slides.html.

2.5.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV5/.

2.5.5 Mathematical Writing Explorations
Exploration 2.5.11

• What is a basis for M2,2?

• What about M3,3?

• Could we write each of these in a way that looks like the standard basis
vectors in Rm for some m? Make a conjecture about the relationship
between these spaces of matrices and standard Eulidean space.

Exploration 2.5.12 Recall our earlier definition of symmetric matrices. Find
a basis for each of the following:

• The space of 2× 2 symmetric matrices.

• The space of 3× 3 symmetric matrices.

• The space of n× n symmetric matrices.
Exploration 2.5.13 Must a basis for the space P2, the space of all quadratic
polynomials, contain a polynomial of each degree less than or equal to 2? Gen-
eralize your result to polynomials of arbitrary degree.

2.5.6 Sample Problem and Solution
Sample problem Example B.1.9.

1www.youtube.com/watch?v=ayft2QhQ-xM

https://www.youtube.com/watch?v=ayft2QhQ-xM
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV5.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV5.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV5/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV5/
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2.6 Subspace Basis and Dimension (EV6)

Learning Outcomes
• Compute a basis for the subspace spanned by a given set of Euclidean

vectors, and determine the dimension of the subspace.

2.6.1 Class Activities
Observation 2.6.1 Recall from section Section 2.3 that a subspace of a
vector space is the result of spanning a set of vectors from that space.

Recall also that a linearly dependent set contains “redundant” vectors. For
example, only two of the three vectors in Figure 14 are needed to span the
planar subspace.

Activity 2.6.2 Consider the subspace of R4 given by W = span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


.

(a) Mark the column of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s

spanning set is linearly dependent.

(b) What would be the result of removing the vector that gave us this col-
umn?

A. The set still spans W , and remains linearly dependent.
B. The set still spans W , but is now also linearly independent.
C. The set no longer spans W , and remains linearly dependent.
D. The set no longer spans W , but is now linearly independent.

rref ([2,2,2,1; 3,0,-3,5; 0,1,2,-1; 1,-1,-3,0])

Definition 2.6.3 Let W be a subspace of a vector space. A basis for W is a
linearly independent set of vectors that spans W (but not necessarily the entire
vector space). ♢
Observation 2.6.4 So given a set S = {v⃗1, . . . , v⃗m}, to compute a basis for
the subspace spanS, simply remove the vectors corresponding to the non-pivot
columns of RREF[v⃗1 . . . v⃗m]. For example, since

RREF

 1 2 0 1
2 4 −2 2
3 6 −2 1

 =

 1 2 0 1

0 0 1 1
0 0 0 0



the subspace W = span


 1

2
3

 ,

 2
4
6

 ,

 0
−2
−2

 ,

 1
2
1

 has


 1

2
3

 ,

 0
−2
−2


as a basis.
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Activity 2.6.5
(a) Find a basis for spanS where

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 .

(b) Find a basis for spanT where

T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 .

Observation 2.6.6 Even though we found different bases for them, spanS
and spanT are exactly the same subspace of R4, since

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 = T .

Thus the basis for a subspace is not unique in general.
Fact 2.6.7 Any non-trivial real vector space has infinitely-many different bases,
but all the bases for a given vector space are exactly the same size.

For example,

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


are all valid bases for R3, and they all contain three vectors.
Definition 2.6.8 The dimension of a vector space or subspace is equal to
the size of any basis for the vector space.

As you’d expect, Rn has dimension n. For example, R3 has dimension 3
because any basis for R3 such as

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


contains exactly three vectors. ♢
Activity 2.6.9 Consider the following subspace W of R4:

W = span




1
0
0
−1

 ,


−2
0
0
2

 ,


−3
1
−5
5

 ,


12
−3
15
−18


 .

(a) Explain and demonstrate how to find a basis of W .

(b) Explain and demonstrate how to find the dimension of W .
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Activity 2.6.10 The dimension of a subspace may be found by doing what
with an appropriate RREF matrix?

A. Count the rows.

B. Count the non-pivot columns.

C. Count the pivots.

D. Add the number of pivot rows and pivot columns.

2.6.2 Videos

Interactive1

Figure 17 Video: Finding a basis of a subspace and computing the dimension
of a subspace

2.6.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV6.slides.html.

2.6.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV6/.

2.6.5 Mathematical Writing Explorations
Exploration 2.6.11 Prove each of the following statements is true.

• If {⃗b1, b⃗2, . . . , b⃗m} and {c⃗1, c⃗2, . . . , c⃗n} are each a basis for a vector space
V , then m = n.

• If {v⃗1, v⃗2 . . . , v⃗n} is linearly independent, then so is {v⃗1, v⃗1 + v⃗2, . . . , v⃗1 +
v⃗2 + · · ·+ v⃗n}.

• Let V be a vector space of dimension n, and v⃗ ∈ V . Then there exists a
basis for V which contains v⃗.

Exploration 2.6.12 Suppose we have the set of all function f : S → R. We
claim that this is a vector space under the usual operation of function addition
and scalar multiplication. What is the dimension of this space for each choice
of S below:

• S = {1}

• S = {1, 2}
1www.youtube.com/watch?v=iMYIbdtspyo

https://www.youtube.com/watch?v=iMYIbdtspyo
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV6.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV6.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV6/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV6/
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• S = {1, 2, . . . , n}

• S = R

Exploration 2.6.13 Suppose you have the vector space V =


 x

y
z

 ∈ R3 : x+ y + z = 1


with the operations

 x1

y1
z1

⊕

 x2

y2
z2

 =

 x1 + x2 − 1
y1 + y2
z1 + z2

 and α�

 x1

y1
z1

 = αx1 − α+ 1
αy1
αz1

 . Find a basis for V and determine it’s dimension.

2.6.6 Sample Problem and Solution
Sample problem Example B.1.10.

2.7 Homogeneous Linear Systems (EV7)

Learning Outcomes
• Find a basis for the solution set of a homogeneous system of equations.

2.7.1 Class Activities
Definition 2.7.1 A homogeneous system of linear equations is one of the
form:

a11x1 + a12x2 + . . .+ a1nxn =0

a21x1 + a22x2 + . . .+ a2nxn =0

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn =0

This system is equivalent to the vector equation:

x1v⃗1 + · · ·+ xnv⃗n = 0⃗

and the augmented matrix:
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
...

... . . . ...
...

am1 am2 · · · amn 0


♢

Activity 2.7.2 Consider the homogeneous vector equation x1v⃗1+ · · ·+xnv⃗n =
0⃗.

(a) Note that if

 a1
...
an

 and

 b1
...
bn

 are both solutions, we know that

a1v⃗1 + · · ·+ anv⃗n = 0⃗ and b1v⃗1 + · · ·+ bnv⃗n = 0⃗.
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Therefore by adding these equations,

(a1 + b1)v⃗1 + · · ·+ (an + bn)v⃗n = 0⃗

shows that

 a1 + b1
...

an + bn

 is also a solution. Thus the solution set of a

homogeneous system is...

A. Closed under addition.
B. Not closed under addition.
C. Linearly dependent.
D. Linearly independent.

(b) Similarly, if c ∈ R,

 ca1
...

can

 is a solution. Thus the solution set of

a homogeneous system is also closed under scalar multiplication, and
therefore...

A. A basis for Rn.
B. A subspace of Rn.
C. All of Rn.
D. The empty set.

Activity 2.7.3 Consider the homogeneous system of equations

x1 +2x2 + x4 =0

2x1 +4x2 −x3 − 2x4 =0

3x1 +6x2 −x3 − x4 =0

(a) Find its solution set (a subspace of R4).

(b) Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .

(c) Rewrite this solution space in the form

span




?
?
?
?

 ,


?
?
?
?


 .

(d) Which of these choices best describes the set of two vectors




?
?
?
?

 ,


?
?
?
?




used in this span?

A. The set is linearly dependent.
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B. The set is linearly independent.
C. The set spans all of R4.
D. The set fails to span the solution space.

Fact 2.7.4 The coefficients of the free variables in the solution space of a linear
system always yield linearly independent vectors that span the solution space.

Thus ifa


−2
1
0
0

+ b


−1
0
−4
1


∣∣∣∣∣∣∣∣ a, b ∈ R

 = span




−2
1
0
0

 ,


−1
0
−4
1




is the solution space for a homogeneous system, then


−2
1
0
0

 ,


−1
0
−4
1




is a basis for the solution space.
Activity 2.7.5 Consider the homogeneous system of equations

2x1 +4x2 +2x3 − 4x4 =0

−2x1 − 4x2 + x3 + x4 =0

3x1 +6x2 − x3 − 4x4 =0

Find a basis for its solution space.
Activity 2.7.6 Consider the homogeneous vector equation

x1

 2
−2
3

+ x2

 4
−4
6

+ x3

 2
1
−1

+ x4

 −4
1
−4

 =

 0
0
0


Find a basis for its solution space.

Activity 2.7.7 Consider the homogeneous system of equations

x1 − 3x2 +2x3 =0

2x1 +6x2 +4x3 =0

x1 +6x2 − 4x3 =0

(a) Find its solution space.

(b) Which of these is the best choice of basis for this solution space?

A {} B {⃗0} C The basis does
not exist

Activity 2.7.8 Suppose that in a certain 3D video game, the “camera” aligns
the position (x, y, z) within the level onto the pixel located at (x+ y, y− z) on
the television screen.
(a) What homoegeneous linear system describes the positions within the level

that would be aligned with the pixel (0, 0) on the screen?

(b) Solve this system to describe these locations.
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2.7.2 Videos

Interactive1

Figure 18 Video: Polynomial and matrix calculations

2.7.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/EV7.slides.html.

2.7.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/EV7/.

2.7.5 Mathematical Writing Explorations
Exploration 2.7.9 An n × n matrix M is non-singular if the associated
homogeneous system with coefficient matrix M is consistent with one solution.
Assume the matrices in the writing explorations in this section are all non-
singular.

• Prove that the reduced row echelon form of M is the identity matrix.

• Prove that, for any column vector b⃗ =


b1
b2
...
bn

, the system of equations

given by
[
M b⃗

]
has a unique solution.

• Prove that the columns of M form a basis for Rn.

• Prove that the rank of M is n.

2.7.6 Sample Problem and Solution
Sample problem Example B.1.11.

1www.youtube.com/watch?v=TbN3lvLaNOw

https://www.youtube.com/watch?v=TbN3lvLaNOw
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV7.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/EV7.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV7/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/EV7/


Chapter 3

Algebraic Properties of Lin-
ear Maps (AT)

Learning Outcomes
How can we understand linear maps algebraically?

By the end of this chapter, you should be able to...

1. Determine if a map between vector spaces of polynomials is linear or not.

2. Translate back and forth between a linear transformation of Euclidean
spaces and its standard matrix, and perform related computations.

3. Compute a basis for the kernel and a basis for the image of a linear map,
and verify that the rank-nullity theorem holds for a given linear map.

4. Determine if a given linear map is injective and/or surjective.

5. Explain why a given set with defined addition and scalar multiplication
does satisfy a given vector space property, but nonetheless isn’t a vector
space.

6. Answer questions about vector spaces of polynomials or matrices.

Readiness Assurance. Before beginning this chapter, you should be able
to...

1. State the definition of a spanning set, and determine if a set of Euclidean
vectors spans Rn.

• Review: Section 2.2

2. State the definition of linear independence, and determine if a set of
Euclidean vectors is linearly dependent or independent.

• Review: Section 2.4

3. State the definition of a basis, and determine if a set of Euclidean vectors
is a basis.

• Review: Section 2.5, Section 2.6

4. Find a basis of the solution space to a homogeneous system of linear
equations.

49
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• Review: Section 2.7

3.1 Linear Transformations (AT1)

Learning Outcomes
• Determine if a map between vector spaces of polynomials is linear or not.

3.1.1 Class Activities
Definition 3.1.1 A linear transformation (also called a linear map) is a
map between vector spaces that preserves the vector space operations. More
precisely, if V and W are vector spaces, a map T : V → W is called a linear
transformation if

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V , and

2. T (cv⃗) = cT (v⃗) for any c ∈ R, and v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied
before or after the transformation without affecting the result. ♢
Definition 3.1.2 Given a linear transformation T : V → W , V is called the
domain of T and W is called the co-domain of T .

v⃗

domain R3

Linear transformation T : R3 → R2

T (v⃗)

co-domain R2

Figure 19 A linear transformation with a domain of R3 and a co-domain of
R2

♢
Observation 3.1.3 One example of a linear transformation R3 → R2 is the
projection of three-dimesional data onto a two-dimensional screen, as is neces-
sary for computer animiation in film or video games.
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Figure 20 A projection of a 3D teapot onto a 2D screen

Activity 3.1.4 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x− z
3y

]
.

(a) Compute the result of adding vectors before a T transformation:

T

 x
y
z

+

 u
v
w

 = T

 x+ u
y + v
z + w


A.
[

x− u+ z − w
3y − 3v

]

B.
[

x+ u− z − w
3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(b) Compute the result of adding vectors after a T transformation:

T

 x
y
z

+ T

 u
v
w

 =

[
x− z
3y

]
+

[
u− w
3v

]

A.
[

x− u+ z − w
3y − 3v

]

B.
[

x+ u− z − w
3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(c) Is T a linear transformation?
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A. Yes.
B. No.
C. More work is necessary to know.

(d) Compute the result of scalar multiplcation before a T transformation:

T

c

 x
y
z

 = T

 cx
cy
cz


A.
[

cx− cz
3cy

]

B.
[

cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


(e) Compute the result of scalar multiplcation after a T transformation:

cT

 x
y
z

 = c

[
x− z
3y

]

A.
[

cx− cz
3cy

]

B.
[

cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


(f) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.

Activity 3.1.5 Let S : R2 → R4 be given by

S

([
x
y

])
=


x+ y
x2

y + 3
y − 2x


(a) Compute

S

([
0
1

]
+

[
2
3

])
= S

([
2
4

])

A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


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(b) Compute

S

([
0
1

])
+ S

([
2
3

])
=


0 + 1
02

1 + 3
1− 20

+


2 + 3
22

3 + 3
3− 22



A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(c) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.

Activity 3.1.6 Fill in the ? s, assuming T : R3 → R3 is linear:

T

 0
0
0

 = T

 ?

 1
1
1

 = ?T

 1
1
1

 =

 ?
?
?


Remark 3.1.7 Showing T : V → W is not a linear transformation can be
done by finding an example for any one of the following.

• Show T (⃗0) 6= 0⃗ (where 0⃗ is the additive identity of V and W ).

• Find specific values for v⃗, w⃗ ∈ V such that T (v⃗ + w⃗) 6= T (v⃗) + T (w⃗).

• Find specific values for v⃗ ∈ V and c ∈ R such that T (cv⃗) 6= cT (v⃗).

Otherwise, T can be shown to be linear by proving both of the following in
general.

1. For all v⃗, w⃗ ∈ V , T (v⃗ + w⃗) = T (v⃗) + T (w⃗).

2. For all v⃗ ∈ V and c ∈ R, T (cv⃗) = cT (v⃗).

Note the similarities between this process and showing that a subset of a
vector space is or is not a subspace (Remark 2.3.7).
Activity 3.1.8
(a) Consider the following maps of Euclidean vectors P : R3 → R3 and

Q : R3 → R3 defined by

P

 x
y
z

 =

 −2x− 3 y − 3 z
3x+ 4 y + 4 z
3x+ 4 y + 5 z

 and Q

 x
y
z

 =

 x− 4 y + 9 z
y − 2 z

8 y2 − 3xz

 .

Which do you suspect?

A. P is linear, but Q is not.
B. Q is linear, but P is not.

C. Both maps are linear.
D. Neither map is linear.

(b) Consider the following map of Euclidean vectors S : R2 → R2

S

([
x
y

])
=

[
x+ 2 y
9xy

]
.
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Prove that S is not a linear transformation.

(c) Consider the following map of Euclidean vectors T : R2 → R2

T

([
x
y

])
=

[
8x− 6 y
6x− 4 y

]
.

Prove that T is a linear transformation.

3.1.2 Videos

Interactive1

Figure 21 Video: Showing a transformation is linear

Interactive2

Figure 22 Video: Showing a transformation is not linear

3.1.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/AT1.slides.html.

3.1.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/AT1/.

3.1.5 Mathematical Writing Explorations

Exploration 3.1.9 If V,W are vectors spaces, with associated zero vectors 0⃗V
and 0⃗W , and T : V → W is a linear transformation, does T (⃗0V ) = 0⃗W ? Prove
this is true, or find a counterexample.

1www.youtube.com/watch?v=b1BC2rceq44
2www.youtube.com/watch?v=Z4tUZgJrCxU

https://www.youtube.com/watch?v=b1BC2rceq44
https://www.youtube.com/watch?v=Z4tUZgJrCxU
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT1/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT1/
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Exploration 3.1.10 Assume f : V → W is a linear transformation between
vector spaces. Let v⃗ ∈ V with additive inverse v⃗−1. Prove that f(v⃗−1) =
[f(v⃗)]−1.

3.1.6 Sample Problem and Solution
Sample problem Example B.1.12.

3.2 Standard Matrices (AT2)

Learning Outcomes
• Translate back and forth between a linear transformation of Euclidean

spaces and its standard matrix, and perform related computations.

3.2.1 Class Activities
Remark 3.2.1 Recall that a linear map T : V → W satisfies

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V .

2. T (cv⃗) = cT (v⃗) for any c ∈ R, v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied
before or after the transformation without affecting the result.

Activity 3.2.2 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What is T

 3
0
0

?

A.
[

6
3

]

B.
[

−9
6

]
C.
[

−4
−2

]

D.
[

6
−4

]

Activity 3.2.3 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What is T

 1
0
1

?

A.
[

2
1

]

B.
[

3
−1

]
C.
[

−1
3

]

D.
[

5
−8

]

Activity 3.2.4 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =
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[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What is T

 −2
0
−3

?

A.
[

2
1

]

B.
[

3
−1

]
C.
[

−1
3

]

D.
[

5
−8

]

Activity 3.2.5 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What piece of information would help you

compute T

 0
4
−1

?

A. The value of T

 0
−4
0

.

B. The value of T

 0
1
0

.

C. The value of T

 1
1
1

.

D. Any of the above.

Fact 3.2.6 Consider any basis {⃗b1, . . . , b⃗n} for V . Since every vector v⃗ can be
written as a linear combination of basis vectors, v⃗ = x1⃗b1+ · · ·+xnb⃗n, we may
compute T (v⃗) as follows:

T (v⃗) = T (x1⃗b1 + · · ·+ xnb⃗n) = x1T (⃗b1) + · · ·+ xnT (⃗bn).

Therefore any linear transformation T : V → W can be defined by just describ-
ing the values of T (⃗bi).

Put another way, the images of the basis vectors completely determine the
transformation T .
Definition 3.2.7 Since a linear transformation T : Rn → Rm is determined
by its action on the standard basis {e⃗1, . . . , e⃗n}, it is convenient to store this
information in an m × n matrix, called the standard matrix of T , given by
[T (e⃗1) · · · T (e⃗n)].

For example, let T : R3 → R2 be the linear map determined by the following
values for T applied to the standard basis of R3.

T (e⃗1) = T

([
1
0
0

])
=
[

3
2

]
T (e⃗2) = T

([
0
1
0

])
=
[

−1
4

]
T (e⃗3) = T

([
0
0
1

])
=
[

5
0

]
Then the standard matrix corresponding to T is

[
T (e⃗1) T (e⃗2) T (e⃗3)

]
=

[
3 −1 5
2 4 0

]
.

♢
Activity 3.2.8 Let T : R4 → R3 be the linear transformation given by

T (e⃗1) =

 0
3
−2

 T (e⃗2) =

 −3
0
1

 T (e⃗3) =

 4
−2
1

 T (e⃗4) =

 2
0
0





CHAPTER 3. ALGEBRAIC PROPERTIES OF LINEAR MAPS (AT) 57

Write the standard matrix [T (e⃗1) · · · T (e⃗n)] for T .

Activity 3.2.9 Let T : R3 → R2 be the linear transformation given by

T

 x
y
z

 =

[
x+ 3z

2x− y − 4z

]

(a) Compute T (e⃗1), T (e⃗2), and T (e⃗3).

(b) Find the standard matrix for T .
Fact 3.2.10 Because every linear map T : Rm → Rn has a linear combination
of the variables in each component, and thus T (e⃗i) yields exactly the coefficients
of xi, the standard matrix for T is simply an array of the coefficients of the xi:

T




x
y
z
w


 =

[
ax+ by + cz + dw
ex+ fy + gz + hw

]
A =

[
a b c d
e f g h

]

Activity 3.2.11 Let T : R3 → R3 be the linear transformation given by the
standard matrix  3 −2 −1

4 5 2
0 −2 1

 .

(a) Compute T

 1
2
3

.

(b) Compute T

 x
y
z

.

Activity 3.2.12 Compute the following linear transformations of vectors given
their standard matrices.
(a)

T1

([
1
2

])
for the standard matrix A1 =


4 3
0 −1
1 1
3 0


(b)

T2




1
1
0
−3


 for the standard matrix A2 =

[
4 3 0 −1
1 1 3 0

]

(c)

T3

 0
−2
0

 for the standard matrix A3 =


4 3 0
0 −1 3
5 1 1
3 0 0


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3.2.2 Videos

Interactive1

Figure 23 Video: Using the standard matrix to compute the image of a vector

3.2.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/AT2.slides.html.

3.2.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/AT2/.

3.2.5 Mathematical Writing Explorations
We can represent images in the plane R2 using vectors, and manipulate those
images with linear transformations. We introduce some notation in these ex-
plorations that is needed for their completion, but is not essential to the rest
of the text. These have a geometric flair to them, and can be understood by
thinking of geometric transformations in terms of standard matrices.

Given two vectors v⃗ =


v1
v2
...
vn

 and w⃗ =


w1

w2

...
wn

, we define the dot prod-

uct as
v⃗ · w⃗ = v1w1 + v2w2 + · · · vnwn.

Exploration 3.2.13 For each of the following properties, determine if it is held
by the dot product. Either provide a proof it the property holds, or provide a
counter-example if it does not.

• Distributive over addition (e.g., (u⃗+ v⃗) · w⃗ = u⃗ · w⃗ + v⃗ · w⃗)?

• Associative?

• Commutative?
Exploration 3.2.14 Given the properties you proved in the last exploration,
could the dot product take the place of ⊕ as a vector space operation on Rn?
Exploration 3.2.15 Is the dot product a linear operator? That is, given
vectors u⃗, v⃗, w⃗ ∈ Rn, and k,m ∈ R, is it true that

u⃗ · (kv⃗ +mw⃗) = k(u⃗ · v⃗) +m(u⃗ · w⃗).

Prove or provide a counter-example.
1www.youtube.com/watch?v=37YWYC4VOGk

https://www.youtube.com/watch?v=37YWYC4VOGk
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT2/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT2/
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Exploration 3.2.16 Assume v⃗ =


v1
v2
...
vn

 and define the length of a vector by

|v⃗| =

(
n∑

i=1

v2i

)1/2

.

Prove that |u⃗| = |v⃗| if an only if u⃗+ v⃗ and u⃗− v⃗ are perpendicular. You may
use the fact (try and prove it!) that two vectors are perpendicular if and only
if their dot product is zero.
Exploration 3.2.17

• A dilation is given by by mapping a vector v⃗ =

[
x
y

]
to some scalar

multiple of v⃗.

• A rotation is given by v⃗ 7→
[

cos(θ)x− sin(θ)y
cos(θ)y + sin(θ)x

]
.

• A reflection of v⃗ over a line l can be found by first finding a vector
l⃗ =

[
lx
ly

]
along l, then v⃗ 7→ 2 l⃗·v⃗

l⃗·⃗l
l⃗ − v⃗.

Represent each of the following transformations with respect to the standard
basis in R2.

• Rotation through an angle θ.

• Reflection over a line l passing through the origin.

• Dilation by some scalar s.

Prove that each transformation is linear, and that your matrix representations
are correct.

3.2.6 Sample Problem and Solution
Sample problem Example B.1.13.

3.3 Image and Kernel (AT3)

Learning Outcomes
• Compute a basis for the kernel and a basis for the image of a linear map,

and verify that the rank-nullity theorem holds for a given linear map.

3.3.1 Class Activities
Activity 3.3.1 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


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Which of these subspaces of R2 describes the set of all vectors that transform
into 0⃗?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}

Definition 3.3.2 Let T : V → W be a linear transformation, and let z⃗ be the
additive identity (the “zero vector”) of W . The kernel of T is an important
subspace of V defined by

kerT =
{
v⃗ ∈ V

∣∣ T (v⃗) = z⃗
}

kerT

0⃗

Figure 24 The kernel of a linear transformation
♢

Activity 3.3.3 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R3 describes kerT , the set of all vectors that
transform into 0⃗?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

a
0

 ∣∣∣∣∣∣ a ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R


Activity 3.3.4 Let T : R3 → R2 be the linear transformation given by the
standard matrix

T

 x
y
z

 =

[
3x+ 4y − z
x+ 2y + z

]

(a) Set T

 x
y
z

 =

[
0
0

]
to find a linear system of equations whose

solution set is the kernel.

(b) Use RREF(A) to solve this homogeneous system of equations and find a
basis for the kernel of T .
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Activity 3.3.5 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 2x+ 4y + 2z − 4w
−2x− 4y + z + w
3x+ 6y − z − 4w

 .

Find a basis for the kernel of T .
Activity 3.3.6 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R3 describes the set of all vectors that are the
result of using T to transform R2 vectors?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

b
0

 ∣∣∣∣∣∣ a, b ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R


Definition 3.3.7 Let T : V → W be a linear transformation. The image of
T is an important subspace of W defined by

ImT =
{
w⃗ ∈ W

∣∣ there is some v⃗ ∈ V with T (v⃗) = w⃗
}

In the examples below, the left example’s image is all of R2, but the right
example’s image is a planar subspace of R3.

Figure 25 The image of a linear transformation
♢

Activity 3.3.8 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R2 describes ImT , the set of all vectors that are
the result of using T to transform R3 vectors?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}

Activity 3.3.9 Let T : R4 → R3 be the linear transformation given by the
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standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 =
[
T (e⃗1) T (e⃗2) T (e⃗3) T (e⃗4)

]
.

Since for a vector v⃗ =


x1

x2

x3

x4

, T (v⃗) = T (x1e⃗1+x2e⃗2+x3e⃗3+x4e⃗4), which

of the following best describes the set of vectors
 3

−1
2

 ,

 4
1
1

 ,

 7
0
3

 ,

 1
2
−1

 ?

A. The set of vectors spans ImT but is not linearly independent.

B. The set of vectors is a linearly independent subset of ImT but does not
span ImT .

C. The set of vectors is linearly independent and spans ImT ; that is, the set
of vectors is a basis for ImT .

Observation 3.3.10 Let T : R4 → R3 be the linear transformation given by
the standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .

Since the set


 3

−1
2

 ,

 4
1
1

 ,

 7
0
3

 ,

 1
2
−1

 spans ImT , we can ob-

tain a basis for ImT by finding RREFA =

 1 0 1 −1
0 1 1 1
0 0 0 0

 and only using

the vectors corresponding to pivot columns:
 3

−1
2

 ,

 4
1
1


Fact 3.3.11 Let T : Rn → Rm be a linear transformation with standard matrix
A.

• The kernel of T is the solution set of the homogeneous system given by
the augmented matrix

[
A 0⃗

]
. Use the coefficients of its free variables

to get a basis for the kernel.

• The image of T is the span of the columns of A. Remove the vectors
creating non-pivot columns in RREFA to get a basis for the image.

Activity 3.3.12 Let T : R3 → R4 be the linear transformation given by the
standard matrix

A =


1 −3 2
2 −6 0
0 0 1
−1 3 1

 .

Find a basis for the kernel and a basis for the image of T .
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Activity 3.3.13 Let T : Rn → Rm be a linear transformation with standard
matrix A. Which of the following is equal to the dimension of the kernel of T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows
Activity 3.3.14 Let T : Rn → Rm be a linear transformation with standard
matrix A. Which of the following is equal to the dimension of the image of T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows
Observation 3.3.15 Combining these with the observation that the number
of columns is the dimension of the domain of T , we have the rank-nullity
theorem:

The dimension of the domain of T equals dim(kerT ) + dim(ImT ).

The dimension of the image is called the rank of T (or A) and the dimension
of the kernel is called the nullity.

Activity 3.3.16 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 x− y + 5 z + 3w
−x− 4 z − 2w
y − 2 z − w

 .

(a) Explain and demonstrate how to find the image of T and a basis for that
image.

(b) Explain and demonstrate how to find the kernel of T and a basis for that
kernel.

(c) Explain and demonstrate how to find the rank and nullity of T , and why
the rank-nullity theorem holds for T .

3.3.2 Videos

Interactive1

Figure 26 Video: The kernel and image of a linear transformation

https://www.youtube.com/watch?v=FGyD1KLFHwc
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Interactive2

Figure 27 Video: Finding a basis of the image of a linear transformation

Interactive3

Figure 28 Video: Finding a basis of the kernel of a linear transformation

Interactive4

Figure 29 Video: The rank-nullity theorem

3.3.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/AT3.slides.html.

3.3.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/AT3/.

1www.youtube.com/watch?v=FGyD1KLFHwc
2www.youtube.com/watch?v=ut_1dVFqwXw
3www.youtube.com/watch?v=VO2bDSiwbJM
4www.youtube.com/watch?v=A0RzdY_g44Y

https://www.youtube.com/watch?v=ut_1dVFqwXw
https://www.youtube.com/watch?v=VO2bDSiwbJM
https://www.youtube.com/watch?v=A0RzdY_g44Y
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT3/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT3/
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3.3.5 Mathematical Writing Explorations
Exploration 3.3.17 Assume f : V → W is a linear map. Let {v⃗1, v⃗2, . . . , v⃗n}
be a set of vectors in V , and set w⃗i = f(v⃗i).

• If the set {w⃗1, w⃗2, . . . , w⃗n} is linearly independent, must the set {v⃗1, v⃗2, . . . , v⃗n}
also be linearly independent?

• If the set {v⃗1, v⃗2, . . . , v⃗n} is linearly independent, must the set {w⃗1, w⃗2, . . . , w⃗n}
also be linearly independent?

• If the set {w⃗1, w⃗2, . . . , w⃗n} spans W , must the set {v⃗1, v⃗2, . . . , v⃗n} also
span V ?

• If the set {v⃗1, v⃗2, . . . , v⃗n} spans V , must the set {w⃗1, w⃗2, . . . , w⃗n} also
span W?

• In light of this, is the image of the basis of a vector space always a basis
for the codomain?

Exploration 3.3.18 Prove the Rank-Nullity Theorem. Use the steps below
to help you.

• The theorem states that, given a linear map h : V → W , with V and W
vector spaces, the rank of h, plus the nullity of h, equals the dimension
of the domain V . Assume that the dimension of V is n.

• For simplicity, denote the rank of h by R(h), and the nullity by N (h).

• Recall that R(h) is the dimension of the range space of h. State the
precise definition.

• Recall that N (h) is the dimension of the null space of h. State the precise
definition.

• Begin with a basis for the null space, denoted BN = {β⃗1, β⃗2, . . . , β⃗k}.
Show how this can be extended to a basis BV for V , with BV = {β⃗1, β⃗2, . . . , β⃗k, ⃗βk+1, ⃗βk+2, . . . , β⃗n}.
In this portion, you should assume k ≤ n, and construct additional vec-
tors which are not linear combinations of vectors in BN . Prove that you
can always do this until you have n total linearly independent vectors.

• Show that BR = {h( ⃗βk+1), h( ⃗βk+2), . . . , h(β⃗n)} is a basis for the range
space. Start by showing that it is linearly independent, and be sure you
prove that each element of the range space can be written as a linear
combination of BR.

• Show that BR spans the range space.

• State your conclusion.

3.3.6 Sample Problem and Solution
Sample problem Example B.1.14.
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3.4 Injective and Surjective Linear Maps (AT4)

Learning Outcomes
• Determine if a given linear map is injective and/or surjective.

3.4.1 Class Activities
Definition 3.4.1 Let T : V → W be a linear transformation. T is called
injective or one-to-one if T does not map two distinct vectors to the same
place. More precisely, T is injective if T (v⃗) 6= T (w⃗) whenever v⃗ 6= w⃗.

v⃗

w⃗

T (v⃗)
T (w⃗)

injective

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective

Figure 30 An injective transformation and a non-injective transformation
♢

Activity 3.4.2 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T injective?
A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) 6= T (w⃗) whenever v⃗ 6= w⃗.

C. No, because T

 0
0
1

 6= T

 0
0
2

.

D. No, because T

 0
0
1

 = T

 0
0
2

.

Activity 3.4.3 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) 6= T (w⃗) whenever v⃗ 6= w⃗.

C. No, because T

([
1
2

])
6= T

([
3
4

])
.

D. No, because T

([
1
2

])
= T

([
3
4

])
.

Definition 3.4.4 Let T : V → W be a linear transformation. T is called
surjective or onto if every element of W is mapped to by an element of V .
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More precisely, for every w⃗ ∈ W , there is some v⃗ ∈ V with T (v⃗) = w⃗.

surjective not surjective

Figure 31 A surjective transformation and a non-surjective transformation
♢

Activity 3.4.5 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T surjective?

A. Yes, because for every w⃗ =

 x
y
z

 ∈ R3, there exists v⃗ =

[
x
y

]
∈ R2

such that T (v⃗) = w⃗.

B. No, because T

([
x
y

])
can never equal

 1
1
1

.

C. No, because T

([
x
y

])
can never equal

 0
0
0

.

Activity 3.4.6 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T surjective?

A. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 x
y
42

 ∈ R3

such that T (v⃗) = w⃗.

B. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 0
0
z

 ∈ R3

such that T (v⃗) = w⃗.

C. No, because T

 x
y
z

 can never equal
[

3
−2

]
.

Activity 3.4.7 Let T : V → W be a linear transformation where kerT contains
multiple vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective



CHAPTER 3. ALGEBRAIC PROPERTIES OF LINEAR MAPS (AT) 68

Fact 3.4.8 A linear transformation T is injective if and only if kerT = {⃗0}.
Put another way, an injective linear transformation may be recognized by its
trivial kernel.

v⃗

w⃗

0⃗ T (v⃗)
T (w⃗)

T (⃗0) = 0⃗

Figure 32 A linear transformation with trivial kernel, which is therefore injec-
tive
Activity 3.4.9 Let T : V → R3 be a linear transformation where ImT may
be spanned by only two vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective
Fact 3.4.10 A linear transformation T : V → W is surjective if and only
if ImT = W . Put another way, a surjective linear transformation may be
recognized by its identical codomain and image.

surjective, ImT = R2 not surjective, ImT 6= R3

Figure 33 A linear transformation with identical codomain and image, which
is therefore surjective; and a linear transformation with an image smaller than
the codomain R3, which is therefore not surjective.
Definition 3.4.11 A transformation that is both injective and surjective is
said to be bijective. ♢
Activity 3.4.12 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. The kernel of T is trivial, i.e. kerT = {⃗0}.

2. The image of T equals its codomain, i.e. ImT = Rm.

3. For every w⃗ ∈ Rm, the set {w⃗ ∈ Rn|T (v⃗) = w⃗} contains exactly one
vector.

Activity 3.4.13 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. The columns of A span Rm.

2. The columns of A form a basis for Rm.

3. The columns of A are linearly independent.
Activity 3.4.14 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. RREF(A) is the identity matrix.

2. Every column of RREF(A) has a pivot.
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3. Every row of RREF(A) has a pivot.
Activity 3.4.15 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. The system of linear equations given by the augmented matrix
[
A b⃗

]
has a solution for all b⃗ ∈ Rm.

2. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly one solution for all b⃗ ∈ Rm.

3. The system of linear equations given by the augmented matrix
[
A 0⃗

]
has exactly one solution.

Observation 3.4.16 The easiest way to determine if the linear map with
standard matrix A is injective is to see if RREF(A) has a pivot in each column.

The easiest way to determine if the linear map with standard matrix A is
surjective is to see if RREF(A) has a pivot in each row.

Activity 3.4.17 What can you conclude about the linear map T : R2 → R3

with standard matrix

 a b
c d
e f

?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.

Activity 3.4.18 What can you conclude about the linear map T : R3 → R2

with standard matrix
[

a b c
d e f

]
?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.
Fact 3.4.19 The following are true for any linear map T : V → W :

• If dim(V ) > dim(W ), then T is not injective.

• If dim(V ) < dim(W ), then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing
vectors into each other, and a linear transformation cannot increase dimension
from its domain to its image.
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v⃗
w⃗

T (v⃗) = T (w⃗)

not injective, 3 > 2 not surjective, 2 < 3

Figure 34 A linear transformation whose domain has a larger dimension than
its codomain, and is therefore not injective; and a linear transformation whose
domain has a smaller dimension than its codomain, and is therefore not sur-
jective.

But dimension arguments cannot be used to prove a map is injective or
surjective.

Activity 3.4.20 Suppose T : Rn → R4 with standard matrix A =


a11 a12 · · · a1n
a21 a22 · · · a2n
a31 a32 · · · a3n
a41 a42 · · · a4n


is both injective and surjective (we call such maps bijective).
(a) How many pivot rows must RREFA have?

(b) How many pivot columns must RREFA have?

(c) What is RREFA?
Activity 3.4.21 Let T : Rn → Rn be a bijective linear map with standard
matrix A. Label each of the following as true or false.

A. RREF(A) is the identity matrix.

B. The columns of A form a basis for Rn

C. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly one solution for each b⃗ ∈ Rn.

Observation 3.4.22 The easiest way to show that the linear map with stan-
dard matrix A is bijective is to show that RREF(A) is the identity matrix.

Activity 3.4.23 Let T : R3 → R3 be given by the standard matrix

A =

 2 1 −1
4 1 1
6 2 1

 .

Which of the following must be true?
A. T is neither injective nor surjec-

tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref([2,1,-1; 4,1,1; 6,2,1])

Activity 3.4.24 Let T : R3 → R3 be given by

T

 x
y
z

 =

 2x+ y − z
4x+ y + z
6x+ 2y

 .
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Which of the following must be true?
A. T is neither injective nor surjec-

tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref([2,1,-1; 4,1,1; 6,2,0])

Activity 3.4.25 Let T : R2 → R3 be given by

T

([
x
y

])
=

 2x+ 3y
x− y
x+ 3y

 .

Which of the following must be true?
A. T is neither injective nor surjec-

tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref ([2 ,3;1 , -1;1 ,3])

Activity 3.4.26 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
2x+ y − z
4x+ y + z

]
.

Which of the following must be true?
A. T is neither injective nor surjec-

tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref ([2,1,-1;4,1,1])

3.4.2 Videos

Interactive1

Figure 35 Video: The kernel and image of a linear transformation

1www.youtube.com/watch?v=97MK7_QJnhY

https://www.youtube.com/watch?v=97MK7_QJnhY
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Interactive2

Figure 36 Video: Finding a basis of the image of a linear transformation

3.4.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/AT4.slides.html.

3.4.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/AT4/.

3.4.5 Mathematical Writing Explorations
Exploration 3.4.27 Suppose that f : V → W is a linear transformation
between two vector spaces V and W . State carefully what conditions f must
satisfy. Let 0⃗V and 0⃗W be the zero vectors in V and W respectively.

• Prove that f is one-to-one if and only if f(0⃗V ) = 0⃗W , and that 0⃗V is the
unique element of V which is mapped to 0⃗W . Remember that this needs
to be done in both directions. First prove the if and only if statement,
and then show the uniqueness.

• Do not use subtraction in your proof. The only vector space operation
we have is addition, and a structure preserving function only preserves
addition. If you are writing v⃗ − v⃗ = 0⃗V , what you really mean is that
v⃗ ⊕ v⃗−1 = 0⃗V , where v⃗−1 is the additive inverse of v⃗.

Exploration 3.4.28 Start with an n-dimensional vector space V . We can
define the dual of V , denoted V ∗, by

V ∗ = {h : V → R : h is linear}.

Prove that V is isomorphic toV ∗. Here are some things to think about as you
work through this.

• Start by assuming you have a basis for V . How many basis vectors should
you have?

• For each basis vector in V , define a function that returns 1 if it’s given
that basis vector, and returns 0 if it’s given any other basis vector. For
example, if b⃗i and b⃗j are each members of the basis for V , and you’ll need
a function fi : V → {0, 1}, where fi(bi) = 1 and fi(bj) = 0 for all j 6= i.

• How many of these functions will you need? Show that each of them is
in V ∗.

2www.youtube.com/watch?v=4WN1BQhtkK0

https://www.youtube.com/watch?v=4WN1BQhtkK0
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT4/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT4/
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• Show that the functions you found in the last part are a basis for V ∗? To
do this, take an arbitrary function h ∈ V ∗ and some vector v⃗ ∈ V . Write
v⃗ in terms of the basis you chose earlier. How can you write h(v⃗), with
respect to that basis? Pay attention to the fact that all functions in V ∗

are linear.

• Now that you’ve got a basis for V and a basis for V ∗, can you find an
isomorphism?

3.4.6 Sample Problem and Solution
Sample problem Example B.1.15.

3.5 Vector Spaces (AT5)

Learning Outcomes
• Determine if a map between vector spaces of polynomials is linear or not.

3.5.1 Class Activities
Observation 3.5.1 Consider the following applications of properites of the
real numbers R:

1. 1 + (2 + 3) = (1 + 2) + 3.

2. 7 + 4 = 4 + 7.

3. There exists some ? where 5 + ? = 5.

4. There exists some ? where 9 + ? = 0.

5. 1
2 (1 + 7) is the only number that is equally distant from 1 and 7.

Activity 3.5.2 Which of the following properites of R2 Euclidean vectors is
NOT true?

A.
[

x1

x2

]
+

([
y1
y2

]
+

[
z1
z2

])
=

([
x1

x2

]
+

[
y1
y2

])
+

[
z1
z2

]
.

B.
[

x1

x2

]
+

[
y1
y2

]
=

[
y1
y2

]
+

[
x1

x2

]
.

C. There exists some
[

?
?

]
where

[
x1

x2

]
+

[
?
?

]
=

[
x1

x2

]
.

D. There exists some
[

?
?

]
where

[
x1

x2

]
+

[
?
?

]
=

[
0
0

]
.

E. 1

2

([
x1

x2

]
+

[
y1
y2

])
is the only vector whose endpoint is equally distant

from the endpoints of
[

x1

x2

]
and

[
y1
y2

]
.

Observation 3.5.3 Consider the following applications of properites of the
real numbers R:

1. 3(2(7)) = (3 · 2)(7).

2. 1(19) = 19.
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3. There exists some ? such that ? · 4 = 9.

4. 3 · (2 + 8) = 3 · 2 + 3 · 8.

5. (2 + 7) · 4 = 2 · 4 + 7 · 4.

Activity 3.5.4 Which of the following properites of R2 Euclidean vectors is
NOT true?

A. a

(
b

[
x1

x2

])
= ab

[
x1

x2

]
.

B. 1

[
x1

x2

]
=

[
x1

x2

]
.

C. There exists some ? such that ?

[
x1

x2

]
=

[
y1
y2

]
.

D. a(u⃗+ v⃗) = au⃗+ av⃗.

E. (a+ b)v⃗ = av⃗ + bv⃗.
Fact 3.5.5 Every Euclidean vector space Rn satisfies the following properties,
where u⃗, v⃗, w⃗ are Euclidean vectors and a, b are scalars.

1. Vector addition is associative: u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗.

2. Vector addition is commutative: u⃗+ v⃗ = v⃗ + u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ + z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ + (−v⃗) = z⃗.

5. Scalar multiplication is associative: a(bv⃗) = (ab)v⃗.

6. 1 is a multiplicative identity: 1v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a(u⃗ + v⃗) = (au⃗) +
(av⃗).

8. Scalar multiplication distributes over scalar addition: (a + b)v⃗ = (av⃗) +
(bv⃗).

Definition 3.5.6 A vector space V is any set of mathematical objects, called
vectors, and a set of numbers, called scalars, with associated addition ⊕ and
scalar multiplication � operations that satisfy the following properties. Let
u⃗, v⃗, w⃗ be vectors belonging to V , and let a, b be scalars.
We always assume the codomain of our operations is V , i.e. that addition is

a map V × V → V and that scalar multiplication is a map R× V → V .
Likewise, we only consider “real” vector spaces, i.e. those whose scalars

come from R. However, one can similarly define vector spaces with scalars
from other fields like the complex or rational numbers.

1. Vector addition is associative: u⃗⊕ (v⃗ ⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗.

2. Vector addition is commutative: u⃗⊕ v⃗ = v⃗ ⊕ u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ ⊕ z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ ⊕ (−v⃗) = z⃗.

5. Scalar multiplication is associative: a� (b� v⃗) = (ab)� v⃗.

6. 1 is a multiplicative identity: 1� v⃗ = v⃗.
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7. Scalar multiplication distributes over vector addition: a � (u⃗ ⊕ v⃗) =
(a� u⃗)⊕ (a� v⃗).

8. Scalar multiplication distributes over scalar addition: (a+ b)� v⃗ = (a�
v⃗)⊕ (b� v⃗).

♢
Remark 3.5.7 Consider the set C of complex numbers with the usual defintion
for addition: (a+ bi)⊕ (c+ di) = (a+ c) + (b+ d)i.

Let u⃗ = a+ bi, v⃗ = c+ di, and w⃗ = e+ f i. Then

u⃗⊕ (v⃗ ⊕ w⃗) = (a+ bi)⊕ ((c+ di)⊕ (e+ f i))
= (a+ bi)⊕ ((c+ e) + (d+ f)i)
= (a+ c+ e) + (b+ d+ f)i

(u⃗⊕ v⃗)⊕ w⃗ = ((a+ bi)⊕ (c+ di))⊕ (e+ f i)
= ((a+ c) + (b+ d)i)⊕ (e+ f i)
= (a+ c+ e) + (b+ d+ f)i

This proves that complex addition is associative: u⃗⊕ (v⃗⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗.
The seven other vector space properties may also be verified, so C is an example
of a non-Euclidean vector space.
Remark 3.5.8 The following sets are just a few examples of vector spaces,
with the usual/natural operations for addition and scalar multiplication.

• Rn: Euclidean vectors with n components.

• C: Complex numbers.

• Mm,n: Matrices of real numbers with m rows and n columns.

• Pn: Polynomials of degree n or less.

• P: Polynomials of any degree.

• C(R): Real-valued continuous functions.

Activity 3.5.9 Consider the set V = {(x, y) | y = 2x}.
Which of the following vectors is not in V ?

A. (0, 0)

B. (1, 2)

C. (2, 4)

D. (3, 8)

Activity 3.5.10 Consider the set V = {(x, y) | y = 2x} with the operation ⊕
defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2).

Let u⃗, v⃗ be in V with u⃗ = (1, 2) and v⃗ = (2, 4). Using the operations defined
for V , which of the following is u⃗⊕ v⃗?

A. (2, 6)

B. (2, 8)

C. (3, 6)

D. (3, 8)

Activity 3.5.11 Consider the set V = {(x, y) | y = 2x} with operations ⊕,�
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defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c� (x, y) = (cx, yc).

Let a = 2, b = −3 be scalars and u⃗ = (1, 2) ∈ V .

(a) Verify that

(a+ b)� u⃗ =

(
−1,

1

2

)
.

(b) Compute the value of
(a� u⃗)⊕ (b� u⃗) .

Activity 3.5.12 Consider the set V = {(x, y) | y = 2x} with operations ⊕,�
defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c� (x, y) = (cx, yc).

Let a, b be unspecified scalars in R and u⃗ = (x, y) be an unspecified vector
in V .

(a) Show that both sides of the equation

(a+ b)� (x, y) = (a� (x, y))⊕ (b� (x, y))

simplify to the expression (ax+ bx, yayb).

(b) Show that V contains an additive identity element z⃗ = ( ? , ? ) satisfying

(x, y)⊕ ( ? , ? ) = (x, y)

for all (x, y) ∈ V .
That is, pick appropriate values for z⃗ = ( ? , ? ) and then simplify (x, y)⊕
( ? , ? ) into just (x, y).

(c) Is V a vector space?

A. Yes
B. No
C. More work is required

Remark 3.5.13 It turns out V = {(x, y) | y = 2x} with operations ⊕,� defined
by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c� (x, y) = (cx, yc)

satisifes all eight properties from Definition 3.5.6.
Thus, V is a vector space.

Activity 3.5.14 Let V = {(x, y) |x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + y1 + x2 + y2, x
2
1 + x2

2)

c� (x, y) = (xc, y + c− 1).

(a) Show that 1 is the scalar multiplication identity element by simplifying
1� (x, y) to (x, y).

(b) Show that V does not have an additive identity element z⃗ = (z, w) by
showing that (0,−1)⊕ (z, w) 6= (0,−1) no matter what the values of z, w
are.
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(c) Is V a vector space?

A. Yes
B. No
C. More work is required

Activity 3.5.15 Let V = {(x, y) |x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + 3y2) c� (x, y) = (cx, cy).

(a) Show that scalar multiplication distributes over vector addition, i.e.

c� ((x1, y1)⊕ (x2, y2)) = c� (x1, y1)⊕ c� (x2, y2)

for all c ∈ R, (x1, y1), (x2, y2) ∈ V .

(b) Show that vector addition is not associative, i.e.

(x1, y1)⊕ ((x2, y2)⊕ (x3, y3)) 6= ((x1, y1)⊕ (x2, y2))⊕ (x3, y3)

for some vectors (x1, y1), (x2, y2), (x3, y3) ∈ V .

(c) Is V a vector space?

A. Yes
B. No
C. More work is required

3.5.2 Videos

Interactive1

Figure 37 Video: Verifying that a vector space property holds

1www.youtube.com/watch?v=7Qv5Sykdv0I

https://www.youtube.com/watch?v=7Qv5Sykdv0I
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Interactive2

Figure 38 Video: Showing something is not a vector space

3.5.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/AT5.slides.html.

3.5.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/AT5/.

3.5.5 Mathematical Writing Explorations
Exploration 3.5.16

• Show that R+, the set of positive real numbers, is a vector space, but
where x ⊕ y really means the product (so 2 ⊕ 3 = 6), and where scalar
multiplication α�x really means xα. Yes, you really do need to check all
of the properties, but this is the only time I’ll make you do so. Remember,
examples aren’t proofs, so you should start with arbitrary elements of R+

for your vectors. Make sure you’re careful about telling the reader what
α means.

• Prove that the additive identity z⃗ in an arbitrary vector space is unique.

• Prove that additive inverses are unique. Assume you have a vector space
V and some v⃗ ∈ V . Further, assume w⃗1, w⃗2 ∈ V with v⃗⊕w⃗1 = v⃗⊕w⃗2 = z⃗.
Prove that w⃗1 = w⃗2.

Exploration 3.5.17 Consider the vector space of polynomials, Pn. Suppose
further that n = ab, where a and b are each positive integers. Conjecture a
relationship between Ma,b and Pn. We will investigate this further in section
Section 3.6

3.5.6 Sample Problem and Solution
Sample problem Example B.1.16.

2www.youtube.com/watch?v=q6VSE54ogc4

https://www.youtube.com/watch?v=q6VSE54ogc4
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT5.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT5.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT5/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT5/
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3.6 Polynomial and Matrix Spaces (AT6)

Learning Outcomes
• Answer questions about vector spaces of polynomials or matrices.

3.6.1 Class Activities
Observation 3.6.1 Nearly every term we’ve defined for Euclidean vector
spaces Rn was actually defined for all kinds of vector spaces:

• Definition 2.1.2

• Definition 2.1.3

• Definition 2.3.1

• Definition 2.4.2

• Definition 2.5.3

• Definition 3.1.1

• Definition 3.1.2

• Definition 3.3.2

• Definition 3.3.7

• Definition 3.4.1

• Definition 3.4.4

• Definition 3.4.11
Activity 3.6.2 Let V be a vector space with the basis {v⃗1, v⃗2, v⃗3}. Which of
these completes the following definition for a bijective linear map T : V → R3?

T (v⃗) = T (av⃗1 + bv⃗2 + cv⃗3) =

 ?
?
?


A.

 0
0
0

 B.

 a+ b+ c
0
0

 C.

 a
b
c


Fact 3.6.3 Every vector space with finite dimension, that is, every vector
space V with a basis of the form {v⃗1, v⃗2, . . . , v⃗n} has a linear bijection T
with Euclidean space Rn that simply swaps its basis with the standard basis
{e⃗1, e⃗2, . . . , e⃗n} for Rn:

T (c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n) = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n =


c1
c2
...
cn


This transformation (in fact, any linear bijection between vector spaces) is called
an isomorphism, and V is said to be isomorphic to Rn.

Activity 3.6.4 The matrix space M2,2 =

{[
a b
c d

]∣∣∣∣a, b, c, d ∈ R
}

has the
basis {[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

(a) Which Euclidean space is M2,2 isomorphic to?

A. R2

B. R3

C. R4

D. R5
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(b) Describe an isomorphism T : M2,2 → R ? :

T

([
a b
c d

])
=


?

...

?


Activity 3.6.5 The polynomial space P4 =

{
a+ bx+ cx2 + dx3 + ex4

∣∣a, b, c, d, e ∈ R
}

has the basis {
1, x, x2, x3, x4

}
.

(a) Which Euclidean space is P4 isomorphic to?

A. R2

B. R3

C. R4

D. R5

(b) Describe an isomorphism T : P4 → R ? :

T
(
a+ bx+ cx2 + dx3 + ex4

)
=


?

...

?


Remark 3.6.6 Since any finite-dimensional vector space is isomorphic to a
Euclidean space Rn, one approach to answering questions about such spaces is
to answer the corresponding question about Rn.

Activity 3.6.7 Consider how to construct the polynomial x3 + x2 +5x+1 as
a linear combination of polynomials from the set{

x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5
}

.

(a) Describe the vector space involved in this problem, and an isomorphic
Euclidean space and relevant Eucldean vectors that can be used to solve
this problem.

(b) Show how to construct an appropriate Euclidean vector from an appror-
iate set of Euclidean vectors.

(c) Use this result to answer the original question.

Observation 3.6.8 The space of polynomials P (of any degree) has the basis
{1, x, x2, x3, . . . }, so it is a natural example of an infinite-dimensional vector
space.

Since P and other infinite-dimensional spaces cannot be treated as an iso-
morphic finite-dimensional Euclidean space Rn, vectors in such spaces cannot
be studied by converting them into Euclidean vectors. Fortunately, most of
the examples we will be interested in for this course will be finite-dimensional.
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3.6.2 Videos

Interactive1

Figure 39 Video: Polynomial and matrix calculations

3.6.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/AT6.slides.html.

3.6.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/AT6/.

3.6.5 Mathematical Writing Explorations
Exploration 3.6.9 Given a matrix M

• the span of the set of all columns is the column space

• the span of the set of all rows is the row space

• the rankof a matrix is the dimension of the column space.

Calculate the rank of these matrices.

•

 2 1 3
1 −1 2
1 0 3



•

 1 −1 2 3
3 −3 6 3
−2 2 4 5



•

 1 3 2
5 1 1
6 4 3



•

 0 0 0
0 0 0
0 0 0


Exploration 3.6.10 Calculate a basis for the row space and a basis for the

1www.youtube.com/watch?v=yrKAM3QhOPk

https://www.youtube.com/watch?v=yrKAM3QhOPk
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT6.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/AT6.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT6/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/AT6/
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column space of the matrix


2 0 3 4
0 1 1 −1
3 1 0 2
10 −4 −1 −1

.

Exploration 3.6.11 If you are given the values of a, b, and c, what value of d
will cause the matrix

[
a b
c d

]
to have rank 1?

3.6.6 Sample Problem and Solution
Sample problem Example B.1.17.



Chapter 4

Matrices (MX)

Learning Outcomes
What algebraic structure do matrices have?

By the end of this chapter, you should be able to...

1. Multiply matrices.

2. Determine if a matrix is invertible, and if so, compute its inverse.

3. Invert an appropriate matrix to solve a system of linear equations.

4. Express row operations through matrix multiplication.

Readiness Assurance. Before beginning this chapter, you should be able
to...

1. Compose functions of real numbers.

• Review: Khan Academy1

2. Identify the domain and codomain of linear transformations.

• Review: YouTube2

3. Find the matrix corresponding to a linear transformation and compute
the image of a vector given a standard matrix.

• Review: Section 3.2

4. Determine if a linear transformation is injective and/or surjective.

• Review: Section 3.4

5. Interpret the ideas of injectivity and surjectivity in multiple ways.

• Review: YouTube3

1www.khanacademy.org/math/precalculus/composite/composing/v/
function-composition

2www.youtube.com/watch?v=BQMyeQOLvpg
3www.youtube.com/watch?v=WpUv72Y6Dl0
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https://www.khanacademy.org/math/precalculus/composite/composing/v/function-composition
https://www.youtube.com/watch?v=BQMyeQOLvpg
https://www.youtube.com/watch?v=WpUv72Y6Dl0
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4.1 Matrices and Multiplication (MX1)

Learning Outcomes
• Multiply matrices.

4.1.1 Class Activities
Observation 4.1.1 If T : Rn → Rm and S : Rm → Rk are linear maps, then
the composition map S ◦ T computed as (S ◦ T )(v⃗) = S(T (v⃗)) is a linear map
from Rn → Rk.

Rn Rm Rk

S◦T

T S

Figure 40 The composition of two linear maps.

Activity 4.1.2 Let T : R3 → R2 be defined by the 2× 3 starndard matrix B
and S : R2 → R4 be defined by the 4× 2 standard matrix A:

B =

[
2 1 −3
5 −3 4

]
A =


1 2
0 1
3 5
−1 −2

 .

(a) What are the domain and codomain of the composition map S ◦ T?

A. The domain is R3 and the
codomain is R2

B. The domain is R2 and the
codomain is R4

C. The domain is R3 and the
codomain is R4

D. The domain is R4 and the
codomain is R3

(b) What size will the standard matrix of S ◦ T be?

A. 4 (rows) × 3 (columns)
B. 3 (rows) × 4 (columns)

C. 3 (rows) × 2 (columns)
D. 2 (rows) × 4 (columns)

(c) Compute

(S ◦ T )(e⃗1) = S(T (e⃗1)) = S

([
2
5

])
=


?
?
?
?

 .

(d) Compute (S ◦ T )(e⃗2).

(e) Compute (S ◦ T )(e⃗3).

(f) Use (S ◦ T )(e⃗1), (S ◦ T )(e⃗2), (S ◦ T )(e⃗3) to write the standard matrix for
S ◦ T .
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Definition 4.1.3 We define the product AB of a m×n matrix A and a n×k
matrix B to be the m× k standard matrix of the composition map of the two
corresponding linear functions.

For the previous activity, T was a map R3 → R2, and S was a map R2 → R4,
so S ◦ T gave a map R3 → R4 with a 4× 3 standard matrix:

AB =


1 2
0 1
3 5
−1 −2

[ 2 1 −3
5 −3 4

]

= [(S ◦ T )(e⃗1) (S ◦ T )(e⃗2) (S ◦ T )(e⃗3)] =


12 −5 5
5 −3 4
31 −12 11
−12 5 −5

 .

♢

Activity 4.1.4 Let S : R3 → R2 be given by the matrix A =

[
−4 −2 3
0 1 1

]
and T : R2 → R3 be given by the matrix B =

 2 3
1 −1
0 −1

.

(a) Write the dimensions (rows × columns) for A, B, AB, and BA.

(b) Find the standard matrix AB of S ◦ T .

(c) Find the standard matrix BA of T ◦ S.
Activity 4.1.5 Consider the following three matrices.

A =

[
1 0 −3
3 2 1

]
B =


2 2 1 0 1
1 1 1 −1 0
0 0 3 2 1
−1 5 7 2 1

 C =


2 2
0 −1
3 1
4 0


(a) Find the domain and codomain of each of the three linear maps corre-

sponding to A, B, and C.

(b) Only one of the matrix products AB,AC,BA,BC,CA,CB can actually
be computed. Compute it.

Activity 4.1.6 Let B =

 3 −4 0
2 0 −1
0 −3 3

, and let A =

 2 7 −1
0 3 2
1 1 −1

.

(a) Compute the product BA by hand.

(b) Check your work using technology. Using Octave:

B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
B*A

B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
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B*A

Activity 4.1.7 Of the following three matrices, only two may be multiplied.

A =

[
−1 3 −2 −3
1 −4 2 3

]
B =

[
1 −6 −1
0 1 0

]
C =


1 −1 −1
0 1 −2
−2 4 −1
−2 3 −1


Explain which two can be multiplied and why. Then show how to find their
product.

4.1.2 Videos

Interactive1

Figure 41 Video: Multiplying matrices

4.1.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/MX1.slides.html.

4.1.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/MX1/.

4.1.5 Mathematical Writing Explorations
Exploration 4.1.8 Construct 3 matrices, A,B, and C, such that

• AB : R4 → R2

• BC : R2 → R3

• CA : R3 → R4.

• ABC : R2 → R2

Exploration 4.1.9 Construct 3 examples of matrix multiplication, with all
matrix dimensions at least 2.

• Where A and B are not square, but AB is square.

• Where AB = BA.

• Where AB 6= BA.
1www.youtube.com/watch?v=xEv2I-6obgM

https://www.youtube.com/watch?v=xEv2I-6obgM
https://teambasedinquirylearning.github.io/linear-algebra/2023/MX1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/MX1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX1/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX1/
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Exploration 4.1.10 Use the included map in this problem.

A

B

C

D E

Figure 42 Adjacency map, showing roads between 5 cities

• An adjacency matrix for this map is a matrix that has the number of
roads from city i to city j in the (i, j) entry of the matrix. A road is
a path of length exactly 1. All (i, i)entries are 0. Write the adjacency
matrix for this map, with the cities in alphabetical order.

• What does the square of this matrix tell you about the map? The cube?
The n-th power?

4.1.6 Sample Problem and Solution
Sample problem Example B.1.18.

4.2 The Inverse of a Matrix (MX2)

Learning Outcomes
• Determine if a matrix is invertible, and if so, compute its inverse.

4.2.1 Class Activities

Activity 4.2.1 Let A =

 2 7 −1
0 3 2
1 1 −1

. Find a 3 × 3 matrix B such that

BA = A, that is, ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1


Check your guess using technology.
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Definition 4.2.2 The identity matrix In (or just I when n is obvious from
context) is the n× n matrix

In =


1 0 · · · 0

0 1
. . . ...

... . . . . . . 0
0 · · · 0 1

 .

It has a 1 on each diagonal element and a 0 in every other position. ♢
Fact 4.2.3 For any square matrix A, IA = AI = A: 1 0 0

0 1 0
0 0 1

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1

 1 0 0
0 1 0
0 0 1

 =

 2 7 −1
0 3 2
1 1 −1


Activity 4.2.4 Let T : Rn → Rm be a linear map with standard matrix A.
Sort the following items into three groups of statements: a group that means
T is injective, a group that means T is surjective, and a group that means T
is bijective.

A. Ax⃗ = b⃗ has a solution for all b⃗ ∈ Rm

B. Ax⃗ = b⃗ has a unique solution for all b⃗ ∈ Rm

C. Ax⃗ = 0⃗ has a unique solution.

D. The columns of A span Rm

E. The columns of A are linearly independent

F. The columns of A are a basis of Rm

G. Every column of RREF(A) has a pivot

H. Every row of RREF(A) has a pivot

I. m = n and RREF(A) = I

Activity 4.2.5 Let T : R3 → R3 be the linear transformation given by the

standard matrix A =

 2 −1 0
2 1 4
1 1 3

.

Write an augmented matrix representing the system of equations given by

T (x⃗) = 0⃗, that is, Ax⃗ =

 0
0
0

. Then solve T (x⃗) = 0⃗ to find the kernel of T .

Definition 4.2.6 Let T : Rn → Rn be a linear map with standard matrix A.
• If T is a bijection and b⃗ is any Rn vector, then T (x⃗) = Ax⃗ = b⃗ has a

unique solution.

• So we may define an inverse map T−1 : Rn → Rn by setting T−1(⃗b) to
be this unique solution.

• Let A−1 be the standard matrix for T−1. We call A−1 the inverse
matrix of A, so we also say that A is invertible.

♢
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Activity 4.2.7 Let T : R3 → R3 be the linear transformation given by the

standard matrix A =

 2 −1 −6
2 1 3
1 1 4

.

(a) Write an augmented matrix representing the system of equations given by

T (x⃗) = e⃗1, that is, Ax⃗ =

 1
0
0

. Then solve T (x⃗) = e⃗1 to find T−1(e⃗1).

(b) Solve T (x⃗) = e⃗2 to find T−1(e⃗2).

(c) Solve T (x⃗) = e⃗3 to find T−1(e⃗3).

(d) Write A−1, the standard matrix for T−1.
Observation 4.2.8 We could have solved these three systems simultaneously
by row reducing the matrix [A | I] at once. 2 −1 −6 1 0 0

2 1 3 0 1 0
1 1 4 0 0 1

 ∼

 1 0 0 1 −2 3
0 1 0 −5 14 −18
0 0 1 1 −3 4


Activity 4.2.9 Find the inverse A−1 of the matrix A =

[
1 3
0 −2

]
by row-

reducing [A | I].

Activity 4.2.10 Is the matrix

 2 3 1
−1 −4 2
0 −5 5

 invertible? Give a reason for

your answer.
Observation 4.2.11 An n×n matrix A is invertible if and only if RREF(A) =
In.
Activity 4.2.12 Let T : R2 → R2 be the bijective linear map defined by
T

([
x
y

])
=

[
2x− 3y
−3x+ 5y

]
, with the inverse map T−1

([
x
y

])
=

[
5x+ 3y
3x+ 2y

]
.

(a) Compute (T−1 ◦ T )
([

−2
1

])
.

(b) If A is the standard matrix for T and A−1 is the standard matrix for
T−1, find the 2× 2 matrix

A−1A =

[
? ?
? ?

]
.

Observation 4.2.13 T−1 ◦ T = T ◦ T−1 is the identity map for any bijective
linear transformation T . Therefore A−1A = AA−1 equals the identity matrix
I for any invertible matrix A.
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4.2.2 Videos

Interactive1

Figure 43 Video: Invertible matrices

Interactive2

Figure 44 Video: Finding the inverse of a matrix

4.2.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/MX2.slides.html.

4.2.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/MX2/.

4.2.5 Mathematical Writing Explorations
Exploration 4.2.14 Assume A is an n × n matrix. Prove the following are
equivalent. Some of these results you have proven previously.

• A is non-singular.

• A row reduces to the identity matrix.

• For any choice of b⃗ ∈ Rn, the system of equations represented by the
augmented matrix [A|⃗b] has a unique solution.

• The columns of A are a linearly independent set.

• The columns of A form a basis for Rn.

• The rank of A is n.
1www.youtube.com/watch?v=an-Qo2QEyXU
2www.youtube.com/watch?v=9aXvJGwYZ90

https://www.youtube.com/watch?v=an-Qo2QEyXU
https://www.youtube.com/watch?v=9aXvJGwYZ90
https://teambasedinquirylearning.github.io/linear-algebra/2023/MX2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/MX2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX2/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX2/
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• The nullity of A is 0.

• A is invertible.

• The linear transformation T with standard matrix A is injective and
surjective. Such a map is called an isomorphism.

Exploration 4.2.15
• Assume T is a square matrix, and T 4 is the zero matrix. Prove that

(I − T )−1 = I + T + T 2 + T 3. You will need to first prove a lemma that
matrix multiplication distributes over matrix addition.

• Generalize your result to the case where Tn is the zero matrix.

4.2.6 Sample Problem and Solution
Sample problem Example B.1.19.

4.3 Solving Systems with Matrix Inverses (MX3)

Learning Outcomes
• Invert an appropriate matrix to solve a system of linear equations.

4.3.1 Class Activities
Activity 4.3.1 Consider the following linear system with a unique solution:

3x1 − 2x2 − 2x3 − 4x4 = −7
2x1 − x2 − x3 − x4 = −1
−x1 + x3 = −1

− x2 − 2x4 = −5

(a) Define

T



x1

x2

x3

x4


 =


?
?
?
?



so that T (x⃗) =


−7
−1
−1
−5

 has the same solution set as this system.

(b) Define

A =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?



so that Ax⃗ =


−7
−1
−1
−5

 has the same solution set as this system.
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(c) Find

B =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


so that BAx⃗ = x⃗.

(d) Find x⃗ = BAx⃗ = B


−7
−1
−1
−5

 to solve the system.

Remark 4.3.2 The linear system described by the augmented matrix [A | w⃗]
has exactly the same solution set as the matrix equation Ax⃗ = w⃗.
Activity 4.3.3 Let Ax⃗ = w⃗ describe a linear system. When will this linear
system have exactly one solution?

A. When A is invertible.

B. When A is not invertible.

C. When RREFA has a non-pivot column.

D. When RREFA has a non-pivot row.
Fact 4.3.4 When Ax⃗ = w⃗ has exactly one solution, this solution is given by
x⃗ = A−1w⃗.
Activity 4.3.5 Consider the vector equation

x1

 1
2
−2

+ x2

 −2
−3
3

+ x3

 1
4
−3

 =

 −3
5
−1


with a unique solution.

(a) Explain and demonstrate how this problem can be restated using matrix
multiplication.

(b) Use the properties of matrix multiplication to find the unique solution.

4.3.2 Videos
Video coming soon to this YouTube playlist1.

4.3.3 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/MX3/.

4.3.4 Mathematical Writing Explorations

1www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj

https://www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX3/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX3/
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Exploration 4.3.6 Use row reduction to find the inverse of the following
general matrix. Give conditions on which this inverse exists. 1 b c

d e f
g h i


Exploration 4.3.7 Assume that H is invertible, and that HG is the zero
matrix. Prove that G must be the zero matrix. Would this still be true if H
were not invertible?
Exploration 4.3.8 If H is invertible and r ∈ R, what is the inverse of rH?

Exploration 4.3.9 If H and G are invertible, is H−1 +G−1 = (H +G)−1?
Exploration 4.3.10 If A is nonsingular and square, and both P and Q are
nonsingular, with PAQ = I, prove that A−1 = QP .

4.3.5 Sample Problem and Solution
Sample problem Example B.1.20.

4.4 Row Operations as Matrix Multiplication (MX4)

Learning Outcomes
• Express row operations through matrix multiplication.

4.4.1 Class Activities
Activity 4.4.1 Tweaking the identity matrix slightly allows us to write row
operations in terms of matrix multiplication.
(a) Create a matrix that doubles the third row of A: ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
2 2 −2


(b) Create a matrix that swaps the second and third rows of A: ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
1 1 −1
0 3 2


(c) Create a matrix that adds 5 times the third row of A to the first row: ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 + 5(1) 7 + 5(1) −1 + 5(−1)
0 3 2
1 1 −1


Fact 4.4.2 If R is the result of applying a row operation to I, then RA is the
result of applying the same row operation to A.

• Scaling a row: R =

 c 0 0
0 1 0
0 0 1


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• Swapping rows: R =

 0 1 0
1 0 0
0 0 1



• Adding a row multiple to another row: R =

 1 0 c
0 1 0
0 0 1


Such matrices can be chained together to emulate multiple row operations. In
particular,

RREF(A) = Rk . . . R2R1A

for some sequence of matrices R1, R2, . . . , Rk.
Activity 4.4.3 Consider the two row operations R2 ↔ R3 and R1 +R2 → R1

applied as follows to show A ∼ B:

A =

 −1 4 5
0 3 −1
1 2 3

 ∼

 −1 4 5
1 2 3
0 3 −1


∼

 −1 + 1 4 + 2 5 + 3
1 2 3
0 3 −1

 =

 0 6 8
1 2 3
0 3 −1

 = B

Express these row operations as matrix multiplication by expressing B as the
product of two matrices and A:

B =

 ? ? ?
? ? ?
? ? ?

 ? ? ?
? ? ?
? ? ?

A

Check your work using technology.

4.4.2 Videos

Interactive1

Figure 45 Video: Row operations as matrix multiplication

4.4.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/MX4.slides.html.
1www.youtube.com/watch?v=5kpk67ABLwY

https://www.youtube.com/watch?v=5kpk67ABLwY
https://teambasedinquirylearning.github.io/linear-algebra/2023/MX4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/MX4.slides.html
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4.4.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/MX4/.

4.4.5 Sample Problem and Solution
Sample problem Example B.1.21.

https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX4/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/MX4/


Chapter 5

Geometric Properties of Lin-
ear Maps (GT)

Learning Outcomes
How do we understand linear maps geometrically?

By the end of this chapter, you should be able to...

1. Describe how a row operation affects the determinant of a matrix.

2. Compute the determinant of a 4× 4 matrix.

3. Find the eigenvalues of a 2× 2 matrix.

4. Find a basis for the eigenspace of a 4× 4 matrix associated with a given
eigenvalue.

Readiness Assurance. Before beginning this chapter, you should be able
to...

1. Calculate the area of a parallelogram.

• Review: Khan Academy1

2. Recall and use the definition of a linear transformation.

• Review: Section 3.1

3. Find the matrix corresponding to a linear transformation of Euclidean
spaces.

• Review: Section 3.2

4. Find all roots of quadratic polynomials (including complex ones).

• Review: Khan Academy2, YouTube (1)3, YouTube (2)4

5. Interpret the statement “A is an invertible matrix” in many equivalent
ways in different contexts.

1www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-geometry-topic/
cc-6th-parallelogram-area/v/intuition-for-area-of-a-parallelogram

2www.khanacademy.org/math/algebra-home/alg-polynomials/
alg-factoring-polynomials-quadratic-forms/v/factoring-trinomials-by-grouping-5

3youtu.be/Aa-v1EK7DR4
4www.youtube.com/watch?v=2yBhDsNE0w
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https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-geometry-topic/cc-6th-parallelogram-area/v/intuition-for-area-of-a-parallelogram
https://www.khanacademy.org/math/algebra-home/alg-polynomials/alg-factoring-polynomials-quadratic-forms/v/factoring-trinomials-by-grouping-5
https://youtu.be/Aa-v1EK7DR4
https://www.youtube.com/watch?v=2yBhDsNE0w
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• Review: Section 4.3

5.1 Row Operations and Determinants (GT1)

Learning Outcomes
• Describe how a row operation affects the determinant of a matrix.

5.1.1 Class Activities
Activity 5.1.1 The image in Figure 46 illustrates how the linear transforma-
tion T : R2 → R2 given by the standard matrix A =

[
2 0
0 3

]
transforms the

unit square.

Ae⃗1 =

[
2
0

]
Ae⃗2 =

[
0
3

]

Figure 46 Transformation of the unit square by the matrix A.

(a) What are the lengths of Ae⃗1 and Ae⃗2?

(b) What is the area of the transformed unit square?
Activity 5.1.2 The image below illustrates how the linear transformation
S : R2 → R2 given by the standard matrix B =

[
2 3
0 4

]
transforms the unit

square.
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Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

Figure 47 Transformation of the unit square by the matrix B

(a) What are the lengths of Be⃗1 and Be⃗2?

(b) What is the area of the transformed unit square?
Observation 5.1.3 It is possible to find two nonparallel vectors that are scaled
but not rotated by the linear map given by B.

Be⃗1 =

[
2 3
0 4

] [
1
0

]
=

[
2
0

]
= 2e⃗1

B

[
3
4
1
2

]
=

[
2 3
0 4

] [
3
4
1
2

]
=

[
3
2

]
= 4

[
3
4
1
2

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 48 Certain vectors are stretched out without being rotated.
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The process for finding such vectors will be covered later in this chapter.
Observation 5.1.4 Notice that while a linear map can transform vectors in
various ways, linear maps always transform parallelograms into parallelograms,
and these areas are always transformed by the same factor: in the case of
B =

[
2 3
0 4

]
, this factor is 8.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 49 A linear map transforming parallelograms into parallelograms.
Since this change in area is always the same for a given linear map, it will

be equal to the value of the transformed unit square (which begins with area
1).
Remark 5.1.5 We will define the determinant of a square matrix B, or
det(B) for short, to be the factor by which B scales areas. In order to figure
out how to compute it, we first figure out the properties it must satisfy.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 50 The linear transformation B scaling areas by a constant factor,
which we call the determinant
Activity 5.1.6 The transformation of the unit square by the standard matrix
[e⃗1 e⃗2] =

[
1 0
0 1

]
= I is illustrated below. If det([e⃗1 e⃗2]) = det(I) is the area

of resulting parallelogram, what is the value of det([e⃗1 e⃗2]) = det(I)?
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e⃗1 =

[
1
0

]e⃗2 =

[
0
1

]

Figure 51 The transformation of the unit square by the identity matrix.
The value for det([e⃗1 e⃗2]) = det(I) is:

A. 0

B. 1

C. 2

D. 4
Activity 5.1.7 The transformation of the unit square by the standard matrix
[v⃗ v⃗] is illustrated below: both T (e⃗1) = T (e⃗2) = v⃗. If det([v⃗ v⃗]) is the area of
the generated parallelogram, what is the value of det([v⃗ v⃗])?

v⃗

Figure 52 Transformation of the unit square by a matrix with identical
columns.

The value of det([v⃗ v⃗]) is:
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A. 0

B. 1

C. 2

D. 4
Activity 5.1.8 The transformations of the unit square by the standard matri-
ces [v⃗ w⃗] and [cv⃗ w⃗] are illustrated below. Describe the value of det([cv⃗ w⃗]).

v⃗

w⃗

cv⃗
v⃗

w⃗

Figure 53 The parallelograms generated by v⃗ and w⃗/cw⃗
Describe the value of det([cv⃗ w⃗]):

A. det([v⃗ w⃗])

B. cdet([v⃗ w⃗])

C. c2 det([v⃗ w⃗])

D. Cannot be determined from this
information.

Remark 5.1.9 Consider the vectors u⃗, v⃗, u⃗+ v⃗, and w⃗ displayed below. Each
pair of vectors generates a parallelogram, and the area of each parallelogram
can be described in terms of determinants.

u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 54 The vectors u⃗, v⃗, u⃗+ v⃗ and w⃗

Remark 5.1.10 For example, det([u⃗ w⃗]) represents the shaded area shown
below.
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u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 55 Parallelogram generated by u⃗ and w⃗

Remark 5.1.11 Similarly, det([v⃗ w⃗]) represents the shaded area shown below.

u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 56 Parallelogram generated by v⃗ and w⃗

Activity 5.1.12 The paralellograms generated by the standard matrices [u⃗ w⃗],
[v⃗ w⃗] and [u⃗+ v⃗ w⃗] are illustrated below.
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u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 57 Parallelogram generated by u⃗+ v⃗ and w⃗

Describe the value of det([u⃗+ v⃗ w⃗]).

A. det([u⃗ w⃗]) = det([v⃗ w⃗])

B. det([u⃗ w⃗]) + det([v⃗ w⃗])

C. det([u⃗ w⃗])det([v⃗ w⃗])

D. Cannot be determined from this
information.

Definition 5.1.13 The determinant is the unique function det : Mn,n → R
satisfying these properties:

1. det(I) = 1

2. det(A) = 0 whenever two columns of the matrix are identical.

3. det[· · · cv⃗ · · · ] = cdet[· · · v⃗ · · · ], assuming no other columns change.

4. det[· · · v⃗+w⃗ · · · ] = det[· · · v⃗ · · · ]+det[· · · w⃗ · · · ], assuming no other
columns change.

Note that these last two properties together can be phrased as “The deter-
minant is linear in each column.” ♢
Observation 5.1.14 The determinant must also satisfy other properties. Con-
sider det([v⃗ w⃗ + cv⃗]) and det([v⃗ w⃗]).
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v⃗

w⃗

w⃗ + cv⃗

Figure 58 Parallelogram built by w⃗ + cv⃗ and w⃗

The base of both parallelograms is v⃗, while the height has not changed, so
the determinant does not change either. This can also be proven using the
other properties of the determinant:

det([v⃗ + cw⃗ w⃗]) = det([v⃗ w⃗]) + det([cw⃗ w⃗])

= det([v⃗ w⃗]) + cdet([w⃗ w⃗])

= det([v⃗ w⃗]) + c · 0
= det([v⃗ w⃗])

Remark 5.1.15 Swapping columns may be thought of as a reflection, which
is represented by a negative determinant. For example, the following matrices
transform the unit square into the same parallelogram, but the second matrix
reflects its orientation.

A =

[
2 3
0 4

]
detA = 8 B =

[
3 2
4 0

]
detB = −8

Ae⃗1 =

[
2
0

]

Ae⃗2 =

[
3
4

]

Be⃗2 =

[
2
0

]

Be⃗1 =

[
3
4

]

Figure 59 Reflection of a parallelogram as a result of swapping columns.
Observation 5.1.16 The fact that swapping columns multiplies determinants
by a negative may be verified by adding and subtracting columns.

det([v⃗ w⃗]) = det([v⃗ + w⃗ w⃗])

= det([v⃗ + w⃗ w⃗ − (v⃗ + w⃗)])

= det([v⃗ + w⃗ − v⃗])
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= det([v⃗ + w⃗ − v⃗ − v⃗])

= det([w⃗ − v⃗])

= −det([w⃗ v⃗])

Fact 5.1.17 To summarize, we’ve shown that the column versions of the three
row-reducing operations a matrix may be used to simplify a determinant in the
following way:

1. Multiplying a column by a scalar multiplies the determinant by that scalar:

cdet([· · · v⃗ · · · ]) = det([· · · cv⃗ · · · ])

2. Swapping two columns changes the sign of the determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = −det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column does not change the
determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])

Activity 5.1.18 The transformation given by the standard matrix A scales
areas by 4, and the transformation given by the standard matrix B scales areas
by 3. By what factor does the transformation given by the standard matrix
AB scale areas?

B A

Figure 60 Area changing under the composition of two linear maps

A. 1

B. 7

C. 12

D. Cannot be determined
Fact 5.1.19 Since the transformation given by the standard matrix AB is
obtained by applying the transformations given by A and B, it follows that

det(AB) = det(A)det(B) = det(B)det(A) = det(BA).
Remark 5.1.20 Recall that row operations may be produced by matrix mul-
tiplication.

• Multiply the first row of A by c:


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A

• Swap the first and second row of A:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

A
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• Add c times the third row to the first row of A:


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

A

Fact 5.1.21 The determinants of row operation matrices may be computed by
manipulating columns to reduce each matrix to the identity:

• Scaling a row: det


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = cdet


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c

• Swapping rows: det


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = −1det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = −1

• Adding a row multiple to another row: det


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

 = det


1 0 c− 1c 0
0 1 0− 0c 0
0 0 1− 0c 0
0 0 0− 0c 1

 =

det(I) = 1

Activity 5.1.22 Consider the row operation R1+4R3 → R1 applied as follows
to show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


1 + 4(9) 2 + 4(10) 3 + 4(11) 4 + 4(12)

5 6 7 8
9 10 11 12
13 14 15 16

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation

to I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

(b) Find detR by comparing with the previous slide.

(c) If C ∈ M4,4 is a matrix with det(C) = −3, find

det(RC) = det(R)det(C).

Activity 5.1.23 Consider the row operation R1 ↔ R3 applied as follows to
show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


9 10 11 12
5 6 7 8
1 2 3 4
13 14 15 16

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation
to I.

(b) If C ∈ M4,4 is a matrix with det(C) = 5, find det(RC).
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Activity 5.1.24 Consider the row operation 3R2 → R2 applied as follows to
show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


1 2 3 4

3(5) 3(6) 3(7) 3(8)
9 10 11 12
13 14 15 16

 = B

(a) Find a matrix R such that B = RA.

(b) If C ∈ M4,4 is a matrix with det(C) = −7, find det(RC).

Activity 5.1.25 Let A be any 4× 4 matrix with determinant 2.
(a) Let B be the matrix obtained from A by applying the row operation

R1 − 5R3 → R1. What is detB?

A -4 B -2 C 2 D 10

(b) Let M be the matrix obtained from A by applying the row operation
R3 ↔ R1. What is detM?

A -4 B -2 C 2 D 10

(c) Let P be the matrix obtained from A by applying the row operation
2R4 → R4. What is detP?

A -4 B -2 C 2 D 10
Remark 5.1.26 Recall that the column versions of the three row-reducing
operations a matrix may be used to simplify a determinant:

1. Multiplying columns by scalars:

det([· · · cv⃗ · · · ]) = cdet([· · · v⃗ · · · ])

2. Swapping two columns:

det([· · · v⃗ · · · w⃗ · · · ]) = −det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])

Remark 5.1.27 The determinants of row operation matrices may be computed
by manipulating columns to reduce each matrix to the identity:

• Scaling a row:


1 0 0 0
0 c 0 0
0 0 1 0
0 0 0 0



• Swapping rows:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0


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• Adding a row multiple to another row:


1 0 0 0
0 1 c 0
0 0 1 0
0 0 0 1


Fact 5.1.28 Thus we can also use both row operations to simplify determinants:

• Multiplying rows by scalars:

det


...
cR
...

 = cdet


...
R
...


• Swapping two rows:

det



...
R
...
S
...


= −det



...
S
...
R
...


• Adding multiples of rows/columns to other rows:

det



...
R
...
S
...


= det



...
R+ cS

...
S
...


Activity 5.1.29 Complete the following derivation for a formula calculating
2× 2 determinants:

det
[

a b
c d

]
= ? det

[
1 b/a
c d

]
= ? det

[
1 b/a

c− c d− bc/a

]
= ? det

[
1 b/a
0 d− bc/a

]
= ? det

[
1 b/a
0 1

]
= ? det

[
1 0
0 1

]
= ? det I
= ?

Observation 5.1.30 So we may compute the determinant of
[

2 4
2 3

]
by

using determinant properties to manipulate its rows/columns to reduce the
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matrix to I:

det
[

2 4
2 3

]
= 2 det

[
1 2
2 3

]
= 2 det

[
1 2
0 −1

]
= −2det

[
1 −2
0 1

]
= −2det

[
1 0
0 1

]
= −2

Or we may use a formula:

det
[

2 4
2 3

]
= (2)(3)− (4)(2) = −2

5.1.2 Videos

Interactive1

Figure 61 Video: Row operations, matrix multiplication, and determinants

5.1.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/GT1.slides.html.

5.1.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/GT1/.

5.1.5 Mathematical Writing Explorations
Exploration 5.1.31

• Prove or disprove. The determinant is a linear operator on the vector
space of n× n matrices.

• Find a matrix that will double the area of a region in R2.

• Find a matrix that will triple the area of a region in R2.

• Find a matrix that will halve the area of a region in R2.
1www.youtube.com/watch?v=l6aQ4xTCm88

https://www.youtube.com/watch?v=l6aQ4xTCm88
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT1.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT1/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT1/
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5.1.6 Sample Problem and Solution
Sample problem Example B.1.22.

5.2 Computing Determinants (GT2)

Learning Outcomes
• Compute the determinant of a 4× 4 matrix.

5.2.1 Class Activities
Remark 5.2.1 We’ve seen that row reducing all the way into RREF gives us
a method of computing determinants.

However, we learned in Chapter 1 that this can be tedious for large matrices.
Thus, we will try to figure out how to turn the determinant of a larger matrix
into the determinant of a smaller matrix.
Activity 5.2.2 The following image illustrates the transformation of the unit

cube by the matrix

 1 1 0
1 3 1
0 0 1

.

 0
1
1



 1
1
0



 1
3
0


h = 1

Figure 62 Transformation of the unit cube by the linear transformation.
Recall that for this solid V = Bh, where h is the height of the solid and B

is the area of its parallelogram base. So what must its volume be?

A. det
[

1 1
1 3

]

B. det
[

1 0
3 1

]
C. det

[
1 1
0 1

]

D. det
[

1 3
0 0

]
Fact 5.2.3 If row i contains all zeros except for a 1 on the main (upper-left
to lower-right) diagonal, then both column and row i may be removed without
changing the value of the determinant.

det


3 2 −1 3
0 1 0 0
−1 4 1 0
5 0 11 1

 = det

 3 −1 3
−1 1 0
5 11 1


Since row and column operations affect the determinants in the same way,

the same technique works for a column of all zeros except for a 1 on the main
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diagonal.

det


3 0 −1 5
2 1 4 0
−1 0 1 11
3 0 0 1

 = det

 3 −1 5
−1 1 11
3 0 1


Put another way, if you have either a column or row from the identity

matrix, you can cancel both the column and row containing the 1.
Warning 5.2.4 If the 1 is not on the main diagonal, you’ll need to use row or
column swaps in order to cancel.

det


3 0 −1 5
−1 0 1 11
2 1 4 0
3 0 0 1

 = −det


3 0 −1 5
2 1 4 0
−1 0 1 11
3 0 0 1

 = −det

 3 −1 5
−1 1 11
3 0 1



Activity 5.2.5 Remove an appropriate row and column of det

 1 0 0
1 5 12
3 2 −1


to simplify the determinant to a 2× 2 determinant.

Activity 5.2.6 Simplify det

 0 3 −2
2 5 12
0 2 −1

 to a multiple of a 2×2 determinant

by first doing the following:
(a) Factor out a 2 from a column.

(b) Swap rows or columns to put a 1 on the main diagonal.

Activity 5.2.7 Simplify det

 4 −2 2
3 1 4
1 −1 3

 to a multiple of a 2×2 determinant

by first doing the following:
(a) Use row/column operations to create two zeroes in the same row or col-

umn.

(b) Factor/swap as needed to get a row/column of all zeroes except a 1 on
the main diagonal.

Observation 5.2.8 Using row/column operations, you can introduce zeros
and reduce dimension to whittle down the determinant of a large matrix to a
determinant of a smaller matrix.

det


4 3 0 1
2 −2 4 0
−1 4 1 5
2 8 0 3

 = det


4 3 0 1
6 −18 0 −20
−1 4 1 5
2 8 0 3

 = det

 4 3 1
6 −18 −20
2 8 3



= · · · = −2det

 1 3 4
0 21 43
0 −1 −10

 = −2det
[

21 43
−1 −10

]

= · · · = −2det
[

−167 21
0 1

]
= −2det[−167]

= −2(−167)det(I) = 334
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Activity 5.2.9 Rewrite

det


2 1 −2 1
3 0 1 4
−2 2 3 0
−2 0 −3 −3


as a multiple of a determinant of a 3× 3 matrix.

Activity 5.2.10 Compute det


2 3 5 0
0 3 2 0
1 2 0 3
−1 −1 2 2

 by using any combination

of row/column operations.
Observation 5.2.11 Another option is to take advantage of the fact that the
determinant is linear in each row or column. This approach is called Laplace
expansion or cofactor expansion.

For example, since
[
1 2 4

]
= 1

[
1 0 0

]
+ 2

[
0 1 0

]
+ 4

[
0 0 1

]
,

det

 2 3 5
−1 3 5
1 2 4

 = 1det

 2 3 5
−1 3 5
1 0 0

+ 2det

 2 3 5
−1 3 5
0 1 0

+ 4det

 2 3 5
−1 3 5
0 0 1


= −1det

 5 3 2
5 3 −1
0 0 1

− 2det

 2 5 3
−1 5 3
0 0 1

+ 4 det

 2 3 5
−1 3 5
0 0 1


= −det

[
5 3
5 3

]
− 2det

[
2 5
−1 5

]
+ 4 det

[
2 3
−1 3

]
Observation 5.2.12 Recall the formula for a 2 × 2 determinant found in
Observation 5.1.30:

det
[

a b
c d

]
= ad− bc.

There are formulas and algorithms for the determinants of larger matrices,
but they can be pretty tedious to use. For example, writing out a formula for
a 4× 4 determinant would require 24 different terms!

det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 = a11(a22(a33a44−a43a34)−a23(a32a44−a42a34)+. . . )+. . .

Activity 5.2.13 Based on the previous activities, which technique is easier for
computing determinants?

A. Memorizing formulas.

B. Using row/column operations.

C. Laplace expansion.

D. Some other technique.

Activity 5.2.14 Use your preferred technique to compute det


4 −3 0 0
1 −3 2 −1
3 2 0 3
0 −3 2 −2

.
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Insight 5.2.15 You can check your answers using technology.
det([4,-3,0,0; 1,-3,2,-1; 3,2,0,3; 0,-3,2,-2])

5.2.2 Videos

Interactive1

Figure 63 Video: Simplifying a determinant using row operations

Interactive2

Figure 64 Video: Computing a determinant

5.2.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/GT2.slides.html.

5.2.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/GT2/.

5.2.5 Mathematical Writing Explorations
Exploration 5.2.16 Prove that the equation of a line in the plane, through

points (x1, y1), (x2, y2), when x1 6= x2 is given by the equation det

 x y 1
x1 y1 1
x2 y2 1

 =

0.

Exploration 5.2.17 Prove that the determinant of any diagonal matrix, upper
triangular matrix, or lower triangular matrix, is the product of it’s diagonal
entries.

1www.youtube.com/watch?v=dItnbT4XAlc
2www.youtube.com/watch?v=uWU3D4XnDxA

https://www.youtube.com/watch?v=dItnbT4XAlc
https://www.youtube.com/watch?v=uWU3D4XnDxA
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT2.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT2/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT2/
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Exploration 5.2.18 Show that, if an n × n matrix M has a non-zero deter-
minant, then any v⃗ ∈ Rn can be represented as a linear combination of the
columns of M .
Exploration 5.2.19 What is the smallest number of zeros necessary to place
in a 4× 4 matrix, and the placement of those zeros, such that the matrix has
a zero determinant?

5.2.6 Sample Problem and Solution
Sample problem Example B.1.23.

5.3 Eigenvalues and Characteristic Polynomials
(GT3)

Learning Outcomes
• Find the eigenvalues of a 2× 2 matrix.

5.3.1 Class Activities
Activity 5.3.1 An invertible matrix M and its inverse M−1 are given below:

M =

[
1 2
3 4

]
M−1 =

[
−2 1
3/2 −1/2

]
Which of the following is equal to det(M)det(M−1)?

A. −1

B. 0

C. 1

D. 4

Fact 5.3.2 For every invertible matrix M ,

det(M)det(M−1) = det(I) = 1

so det(M−1) = 1
det(M) .

Furthermore, a square matrix M is invertible if and only if det(M) 6= 0.

Observation 5.3.3 Consider the linear transformation A : R2 → R2 given by
the matrix A =

[
2 2
0 3

]
.
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Ae⃗1e⃗1

Ae⃗2

e⃗2

Figure 65 Transformation of the unit square by the linear transformation A

It is easy to see geometrically that

A

[
1
0

]
=

[
2 2
0 3

] [
1
0

]
=

[
2
0

]
= 2

[
1
0

]
.

It is less obvious (but easily checked once you find it) that

A

[
2
1

]
=

[
2 2
0 3

] [
2
1

]
=

[
6
3

]
= 3

[
2
1

]
.

Definition 5.3.4 Let A ∈ Mn,n. An eigenvector for A is a vector x⃗ ∈ Rn

such that Ax⃗ is parallel to x⃗.

Ae⃗1 = 2e⃗1e⃗1

Ae⃗2

e⃗2

A

[
2
1

]
= 3

[
2
1

]
[

2
1

]

Figure 66 The map A stretches out the eigenvector
[

2
1

]
by a factor of 3

(the corresponding eigenvalue).

In other words, Ax⃗ = λx⃗ for some scalar λ. If x⃗ 6= 0⃗, then we say x⃗ is a
nontrivial eigenvector and we call this λ an eigenvalue of A. ♢
Activity 5.3.5 Finding the eigenvalues λ that satisfy

Ax⃗ = λx⃗ = λ(Ix⃗) = (λI)x⃗

for some nontrivial eigenvector x⃗ is equivalent to finding nonzero solutions for
the matrix equation

(A− λI)x⃗ = 0⃗.

(a) If λ is an eigenvalue, and T is the transformation with standard matrix
A− λI, which of these must contain a non-zero vector?
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A. The kernel of T
B. The image of T

C. The domain of T
D. The codomain of T

(b) Therefore, what can we conclude?

A. A is invertible
B. A is not invertible

C. A− λI is invertible
D. A− λI is not invertible

(c) And what else?

A. detA = 0

B. detA = 1

C. det(A− λI) = 0

D. det(A− λI) = 1

Fact 5.3.6 The eigenvalues λ for a matrix A are exactly the values that make
A− λI non-invertible.

Thus the eigenvalues λ for a matrix A are the solutions to the equation

det(A− λI) = 0.

Definition 5.3.7 The expression det(A − λI) is called characteristic poly-
nomial of A.

For example, when A =

[
1 2
5 4

]
, we have

A− λI =

[
1 2
5 4

]
−
[

λ 0
0 λ

]
=

[
1− λ 2
5 4− λ

]
.

Thus the characteristic polynomial of A is

det
[

1− λ 2
5 4− λ

]
= (1− λ)(4− λ)− (2)(5) = λ2 − 5λ− 6

and its eigenvalues are the solutions −1, 6 to λ2 − 5λ− 6 = 0. ♢

Activity 5.3.8 Let A =

[
5 2
−3 −2

]
.

(a) Compute det(A− λI) to determine the characteristic polynomial of A.

(b) Set this characteristic polynomial equal to zero and factor to determine
the eigenvalues of A.

Activity 5.3.9 Find all the eigenvalues for the matrix A =

[
3 −3
2 −4

]
.

Activity 5.3.10 Find all the eigenvalues for the matrix A =

[
1 −4
0 5

]
.

Activity 5.3.11 Find all the eigenvalues for the matrix A =

 3 −3 1
0 −4 2
0 0 7

.
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5.3.2 Videos

Interactive1

Figure 67 Video: Finding eigenvalues

5.3.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/GT3.slides.html.

5.3.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/GT3/.

5.3.5 Mathematical Writing Explorations
Exploration 5.3.12 What are the maximum and minimum number of eigen-
values associated with an n × n matrix? Write small examples to convince
yourself you are correct, and then prove this in generality.

5.3.6 Sample Problem and Solution
Sample problem Example B.1.24.

5.4 Eigenvectors and Eigenspaces (GT4)

Learning Outcomes
• Find a basis for the eigenspace of a 4× 4 matrix associated with a given

eigenvalue.

5.4.1 Class Activities

1www.youtube.com/watch?v=wTD3axcZ3Gk

https://www.youtube.com/watch?v=wTD3axcZ3Gk
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT3.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT3/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT3/
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Activity 5.4.1 It’s possible to show that −2 is an eigenvalue for

 −1 4 −2
2 −7 9
3 0 4

.

Compute the kernel of the transformation with standard matrix

A− (−2)I =

 ? 4 −2
2 ? 9
3 0 ?


to find all the eigenvectors x⃗ such that Ax⃗ = −2x⃗.
Definition 5.4.2 Since the kernel of a linear map is a subspace of Rn, and
the kernel obtained from A− λI contains all the eigenvectors associated with
λ, we call this kernel the eigenspace of A associated with λ. ♢

Activity 5.4.3 Find a basis for the eigenspace for the matrix

 0 0 3
1 0 −1
0 1 3


associated with the eigenvalue 3.

Activity 5.4.4 Find a basis for the eigenspace for the matrix


5 −2 0 4
6 −2 1 5
−2 1 2 −3
4 5 −3 6


associated with the eigenvalue 1.

Activity 5.4.5 Find a basis for the eigenspace for the matrix


4 3 0 0
3 3 0 0
0 0 2 5
0 0 0 2


associated with the eigenvalue 2.

5.4.2 Videos

Interactive1

Figure 68 Video: Finding eigenvectors

5.4.3 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/GT4.slides.html.

5.4.4 Exercises
Exercises available at https://teambasedinquirylearning.github.io/linear-algebra/
2023/exercises/#/bank/GT4/.

1www.youtube.com/watch?v=mcr4BfI3Rjc

https://www.youtube.com/watch?v=mcr4BfI3Rjc
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/GT4.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT4/
https://teambasedinquirylearning.github.io/linear-algebra/2023/exercises/#/bank/GT4/


CHAPTER 5. GEOMETRIC PROPERTIES OF LINEAR MAPS (GT) 119

5.4.5 Mathematical Writing Explorations
Exploration 5.4.6 Given a matrix A, let {v⃗1, v⃗2, . . . , v⃗n} be the eigenvectors
with associated distinct eigenvalues {λ1, λ2, . . . , λn}. Prove the set of eigenvec-
tors is linearly independent.

5.4.6 Sample Problem and Solution
Sample problem Example B.1.25.



Appendix A

Applications

A.1 Civil Engineering: Trusses and Struts

A.1.1 Activities
Definition A.1.1 In engineering, a truss is a structure designed from several
beams of material called struts, assembled to behave as a single object.

Figure 69 A simple truss

C

A

D

B

E

Figure 70 A simple truss
♢

Activity A.1.2 Consider the representation of a simple truss pictured below.
All of the seven struts are of equal length, affixed to two anchor points applying
a normal force to nodes C and E, and with a 10000N load applied to the node
given by D.

120
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C

A

D

B

E

Figure 71 A simple truss
Which of the following must hold for the truss to be stable?

1. All of the struts will experience compression.

2. All of the struts will experience tension.

3. Some of the struts will be compressed, but others will be tensioned.
Observation A.1.3 Since the forces must balance at each node for the truss to
be stable, some of the struts will be compressed, while others will be tensioned.

C

A

D

B

E

Figure 72 Completed truss
By finding vector equations that must hold at each node, we may determine

many of the forces at play.
Remark A.1.4 For example, at the bottom left node there are 3 forces acting.

C

A

D

B

E

Figure 73 Truss with forces

Let F⃗CA be the force on C given by the compression/tension of the strut
CA, let F⃗CD be defined similarly, and let N⃗C be the normal force of the anchor
point on C.
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For the truss to be stable, we must have:

F⃗CA + F⃗CD + N⃗C = 0⃗

Activity A.1.5 Using the conventions of the previous remark, and where L⃗
represents the load vector on node D, find four more vector equations that
must be satisfied for each of the other four nodes of the truss.

C

A

D

B

E

Figure 74 A simple truss

A : ?

B : ?

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : ?

E : ?

Remark A.1.6 The five vector equations may be written as follows.

A : F⃗AC + F⃗AD + F⃗AB = 0⃗

B : F⃗BA + F⃗BD + F⃗BE = 0⃗

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : F⃗DC + F⃗DA + F⃗DB + F⃗DE + L⃗ = 0⃗

E : F⃗EB + F⃗ED + N⃗E = 0⃗

Observation A.1.7 Each vector has a vertical and horizontal component, so
it may be treated as a vector in R2. Note that F⃗CA must have the same
magnitude (but opposite direction) as F⃗AC .

F⃗CA = x

[
cos(60◦)
sin(60◦)

]
= x

[
1/2√
3/2

]

F⃗AC = x

[
cos(−120◦)
sin(−120◦)

]
= x

[
−1/2

−
√
3/2

]
Activity A.1.8 To write a linear system that models the truss under consid-
eration with constant load 10000 newtons, how many scalar variables will be
required?

• 7: 5 from the nodes, 2 from the anchors

• 9: 7 from the struts, 2 from the anchors

• 11: 7 from the struts, 4 from the anchors
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• 12: 7 from the struts, 4 from the anchors, 1 from the load

• 13: 5 from the nodes, 7 from the struts, 1 from the load

C

A

D

B

E

Figure 75 A simple truss
Observation A.1.9 Since the angles for each strut are known, one variable
may be used to represent each.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 76 Variables for the truss
For example:

F⃗AB = −F⃗BA = x1

[
cos(0)
sin(0)

]
= x1

[
1
0

]

F⃗BE = −F⃗EB = x5

[
cos(−60◦)
sin(−60◦)

]
= x5

[
1/2

−
√
3/2

]
Observation A.1.10 Since the angle of the normal forces for each anchor
point are unknown, two variables may be used to represent each.

C

A

D

B

E

Figure 77 Truss with normal forces
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N⃗C =

[
y1
y2

]
N⃗D =

[
z1
z2

]
The load vector is constant.

L⃗ =

[
0

−10000

]
Remark A.1.11 Each of the five vector equations found previously represent
two linear equations: one for the horizontal component and one for the vertical.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 78 Variables for the truss

C : F⃗CA + F⃗CD + N⃗C = 0⃗

⇔ x2

[
cos(60◦)
sin(60◦)

]
+ x6

[
cos(0◦)
sin(0◦)

]
+

[
y1
y2

]
=

[
0
0

]
Using the approximation

√
3/2 ≈ 0.866, we have

⇔ x2

[
0.5
0.866

]
+ x6

[
1
0

]
+ y1

[
1
0

]
+ y2

[
0
1

]
=

[
0
0

]
Activity A.1.12 Expand the vector equation given below using sine and cosine
of appropriate angles, then compute each component (approximating

√
3/2 ≈

0.866).

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 79 Variables for the truss

D : F⃗DA + F⃗DB + F⃗DC + F⃗DE = −L⃗

⇔ x3

[
cos( ? )
sin( ? )

]
+ x4

[
cos( ? )
sin( ? )

]
+ x6

[
cos( ? )
sin( ? )

]
+ x7

[
cos( ? )
sin( ? )

]
=

[
?
?

]
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⇔ x3

[
?
?

]
+ x4

[
?
?

]
+ x6

[
?
?

]
+ x7

[
?
?

]
=

[
?
?

]
Observation A.1.13 The full augmented matrix given by the ten equations
in this linear system is given below, where the elevent columns correspond
to x1, . . . , x7, y1, y2, z1, z2, and the ten rows correspond to the horizontal and
vertical components of the forces acting at A, . . . , E.

1 −0.5 0.5 0 0 0 0 0 0 0 0 0
0 −0.866 −0.866 0 0 0 0 0 0 0 0 0
−1 0 0 −0.5 0.5 0 0 0 0 0 0 0
0 0 0 −0.866 −0.866 0 0 0 0 0 0 0
0 0.5 0 0 0 1 0 1 0 0 0 0
0 0.866 0 0 0 0 0 0 1 0 0 0
0 0 −0.5 0.5 0 −1 1 0 0 0 0 0
0 0 0.866 0.866 0 0 0 0 0 0 0 10000
0 0 0 0 −0.5 0 −1 0 0 1 0 0
0 0 0 0 0.866 0 0 0 0 0 1 0


Observation A.1.14 This matrix row-reduces to the following.

∼



1 0 0 0 0 0 0 0 0 0 0 −5773.7
0 1 0 0 0 0 0 0 0 0 0 −5773.7
0 0 1 0 0 0 0 0 0 0 0 5773.7
0 0 0 1 0 0 0 0 0 0 0 5773.7
0 0 0 0 1 0 0 0 0 0 0 −5773.7
0 0 0 0 0 1 0 0 0 −1 0 2886.8
0 0 0 0 0 0 1 0 0 −1 0 2886.8
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 5000
0 0 0 0 0 0 0 0 0 0 1 5000


Observation A.1.15 Thus we know the truss must satisfy the following con-
ditions.

x1 = x2 = x5 = −5882.4

x3 = x4 = 5882.4

x6 = x7 = 2886.8 + z1

y1 = −z1

y2 = z2 = 5000

In particular, the negative x1, x2, x5 represent tension (forces pointing into the
nodes), and the postive x3, x4 represent compression (forces pointing out of
the nodes). The vertical normal forces y2 + z2 counteract the 10000 load.
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C

A

D

B

E

Figure 80 Completed truss

A.1.2 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/truss.slides.html.

A.2 Computer Science: PageRank

A.2.1 Activities
Activity A.2.1 The $978,000,000,000 Problem.

In the picture below, each circle represents a webpage, and each arrow
represents a link from one page to another.

1

2 3

4 5 6

7

Figure 81 A seven-webpage network
Based on how these pages link to each other, write a list of the 7 webpages

in order from most important to least important.
Observation A.2.2 The $978,000,000,000 Idea. Links are endorsements.
That is:

1. A webpage is important if it is linked to (endorsed) by important pages.

2. A webpage distributes its importance equally among all the pages it links
to (endorses).

Example A.2.3 Consider this small network with only three pages. Let
x1, x2, x3 be the importance of the three pages respectively.

https://teambasedinquirylearning.github.io/linear-algebra/2023/truss.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/truss.slides.html
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1

2 3
Figure 82 A three-webpage network

1. x1 splits its endorsement in half between x2 and x3

2. x2 sends all of its endorsement to x1

3. x3 sends all of its endorsement to x2.

This corresponds to the page rank system:

x2 =x1

1

2
x1 +x3 =x2

1

2
x1 =x3

□
Observation A.2.4
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1

2 3
Figure 83 A three-webpage network

x2 =x1

1

2
x1 +x3 =x2

1

2
x1 =x3

 0 1 0
1
2 0 1
1
2 0 0

 x1

x2

x3

 =

 x1

x2

x3



By writing this linear system in terms of matrix multiplication, we obtain

the page rank matrix A =

 0 1 0
1
2 0 1
1
2 0 0

 and page rank vector x⃗ =

 x1

x2

x3

.

Thus, computing the importance of pages on a network is equivalent to
solving the matrix equation Ax⃗ = 1x⃗.
Activity A.2.5 Thus, our $978,000,000,000 problem is what kind of problem? 0 1 0

1
2 0 1

2
1
2 0 0

 x1

x2

x3

 = 1

 x1

x2

x3


A. An antiderivative problem

B. A bijection problem

C. A cofactoring problem

D. A determinant problem

E. An eigenvector problem
Activity A.2.6 Find a page rank vector x⃗ satisfying Ax⃗ = 1x⃗ for the following
network’s page rank matrix A.

That is, find the eigenspace associated with λ = 1 for the matrix A, and
choose a vector from that eigenspace.
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1

2 3

Figure 84 A three-webpage net-
work

A =

 0 1 0
1
2 0 1
1
2 0 0



Observation A.2.7 Row-reducing A−I =

 −1 1 0
1
2 −1 1
1
2 0 −1

 ∼

 1 0 −2
0 1 −2
0 0 0


yields the basic eigenvector

 2
2
1

.

Therefore, we may conclude that pages 1 and 2 are equally important, and
both pages are twice as important as page 3.
Activity A.2.8 Compute the 7×7 page rank matrix for the following network.

1

2 3

4 5 6

7

Figure 85 A seven-webpage network
For example, since website 1 distributes its endorsement equally between 2

and 4, the first column is



0
1
2
0
1
2
0
0
0


.

Activity A.2.9 Find a page rank vector for the given page rank matrix.



APPENDIX A. APPLICATIONS 130

A =



0 1
2 0 0 0 0 0

1
2 0 0 1 0 0 1

2
0 1

2 0 0 0 0 0
1
2 0 1

2 0 0 0 1
2

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 1
2 0 1

2
1
2 0



1

2 3

4 5 6

7

Figure 86 A seven-webpage network
Which webpage is most important?

Observation A.2.10 Since a page rank vector for the network is given by x⃗,
it’s reasonable to consider page 2 as the most important page.

x⃗ =



2
4
2
2.5
0
0
1


Based upon this page rank vector, here is a complete ranking of all seven

pages from most important to least important:

2, 4, 1, 3, 7, 5, 6

1

2 3

4 5 6

7

Figure 87 A seven-webpage network
Activity A.2.11 Given the following diagram, use a page rank vector to rank
the pages 1 through 7 in order from most important to least important.
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1 2 3 4

5 6 7

Figure 88 Another seven-webpage network

A.2.2 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/pagerank.slides.html.

A.3 Geology: Phases and Components

A.3.1 Activities
Definition A.3.1 In geology, a phase is any physically separable material in
the system, such as various minerals or liquids.

A component is a chemical compound necessary to make up the phases;
these are usually oxides such as Calcium Oxide (CaO) or Silicon Dioxide (SiO2).

In a typical application, a geologist knows how to build each phase from
the components, and is interested in determining reactions among the different
phases. ♢
Observation A.3.2 Consider the 3 components

c⃗1 = CaO c⃗2 = MgO and c⃗3 = SiO2

and the 5 phases:

p⃗1 = Ca3MgSi2O8 p⃗2 = CaMgSiO4 p⃗3 = CaSiO3

p⃗4 = CaMgSi2O6 p⃗5 = Ca2MgSi2O7

Geologists already know (or can easily deduce) that

p⃗1 = 3c⃗1 + c⃗2 + 2c⃗3 p⃗2 = c⃗1 + c⃗2 + c⃗3 p⃗3 = c⃗1 + 0c⃗2 + c⃗3

p⃗4 = c⃗1 + c⃗2 + 2c⃗3 p⃗5 = 2c⃗1 + c⃗2 + 2c⃗3

since, for example:

c⃗1 + c⃗3 = CaO + SiO2 = CaSiO3 = p⃗3

Activity A.3.3 To study this vector space, each of the three components
c⃗1, c⃗2, c⃗3 may be considered as the three components of a Euclidean vector.

p⃗1 =

 3
1
2

 , p⃗2 =

 1
1
1

 , p⃗3 =

 1
0
1

 , p⃗4 =

 1
1
2

 , p⃗5 =

 2
1
2

 .

https://teambasedinquirylearning.github.io/linear-algebra/2023/pagerank.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/pagerank.slides.html
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Determine if the set of phases is linearly dependent or linearly independent.
Activity A.3.4 Geologists are interested in knowing all the possible chemical
reactions among the 5 phases:

p⃗1 = Ca3MgSi2O8 =

 3
1
2

 p⃗2 = CaMgSiO4 =

 1
1
1

 p⃗3 = CaSiO3 =

 1
0
1



p⃗4 = CaMgSi2O6 =

 1
1
2

 p⃗5 = Ca2MgSi2O7 =

 2
1
2

 .

That is, they want to find numbers x1, x2, x3, x4, x5 such that

x1p⃗1 + x2p⃗2 + x3p⃗3 + x4p⃗4 + x5p⃗5 = 0.

(a) Set up a system of equations equivalent to this vector equation.

(b) Find a basis for its solution space.

(c) Interpret each basis vector as a vector equation and a chemical equation.

Activity A.3.5 We found two basis vectors


1
−2
−2
1
0

 and


0
−1
−1
0
1

, correspond-

ing to the vector and chemical equations

2p⃗2 + 2p⃗3 = p⃗1 + p⃗4 2CaMgSiO4 + 2CaSiO3 = Ca3MgSi2O8 + CaMgSi2O6

p⃗2 + p⃗3 = p⃗5 CaMgSiO4 + CaSiO3 = Ca2MgSi2O7

Combine the basis vectors to produce a chemical equation among the five
phases that does not involve p⃗2 = CaMgSiO4.

A.3.2 Slideshow
Slideshow of activities available at https://teambasedinquirylearning.github.

io/linear-algebra/2023/geology.slides.html.

https://teambasedinquirylearning.github.io/linear-algebra/2023/geology.slides.html
https://teambasedinquirylearning.github.io/linear-algebra/2023/geology.slides.html
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Appendix

B.1 Sample Exercises with Solutions
Here we model one exercise and solution for each learning objective. Your
solutions should not look identical to those shown below, but these solutions
can give you an idea of the level of detail required for a complete solution.
Example B.1.1 LE1. Consider the scalar system of equations

3x1 +2x2 + x4 = 1

−x1 − 4x2 +x3 − 7x4 = 0

x2 −x3 = −2

1. Rewrite this system as a vector equation.

2. Write an augmented matrix corresponding to this system.

Solution.

1.

x1

 3
−1
0

+ x2

 2
−4
1

+ x3

 1
1
−1

+ x4

 1
−7
0

 =

 1
0
−2


2.  3 2 0 1 1

−1 −4 1 −7 0
0 1 −1 0 −2


□

Example B.1.2 LE2.
1. For each of the following matrices, explain why it is not in reduced row

echelon form.

A =


−4 0 4
0 1 −2
0 0 0
0 0 0
0 0 0

 B =


0 1 2
1 0 −3
0 0 0
0 0 0
0 0 0

 C =


1 −4 4
0 1 0
0 0 0
0 0 0
0 0 0



133
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2. Show step-by-step why

RREF

 0 3 1 2
1 2 −1 −3
2 4 −1 −1

 =

 1 0 0 4
0 1 0 −1
0 0 1 5

 .

Solution.

1. • A =


−4 0 4
0 1 −2
0 0 0
0 0 0
0 0 0

 is not in reduced row echelon form because

the pivots are not all 1.

• B =


0 1 2
1 0 −3
0 0 0
0 0 0
0 0 0

 is not in reduced row echelon form because the

pivots are not descending to the right.

• C =


1 −4 4
0 1 0
0 0 0
0 0 0
0 0 0

 is not in reduced row echelon form because not

every entry above and below each pivot is zero.

2.  0 3 1 2
1 2 −1 −3
2 4 −1 −1

 ∼

 1 2 −1 −3
0 3 1 2
2 4 −1 −1

 Swap Rows 1 and 2

∼

 1 2 −1 −3
0 3 1 2
0 0 1 5

 Add − 2 Row 1 to Row 3

∼

 1 2 −1 −3

0 1 1
3

2
3

0 0 1 5

 Multiply Row 3 by 1

3

∼

 1 0 − 5
3 − 13

3

0 1 1
3

2
3

0 0 1 5

 Add − 2 Row 2 to Row 1

∼

 1 0 − 5
3 − 13

3

0 1 0 −1

0 0 1 5

 Add − 1

3
Row 3 to Row 2

∼

 1 0 0 4

0 1 0 −1

0 0 1 5

 Add 5

3
Row 3 to Row 1

□
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Example B.1.3 LE3. Consider each of the following systems of linear
equations or vector equations.

1.
−2x1 + x2 + x3 = −2
−2x1 − 3x2 − 3x3 = 0
3x1 + x2 + x3 = 3

2.

x1

 −5
3
−1

+ x2

 3
−2
2

+ x3

 14
−9
7

 =

 1
0
−4


3.

x1

 0
−1
−1

+ x2

 1
−4
−4

+ x3

 2
−4
−3

 =

 −5
11
8


• Explain how to find a simpler system or vector equation that has the

same solution set for each.

• Explain whether each solution set has no solutions, one solution, or
infinitely-many solutions. If the set is finite, describe it using set no-
tation.

Solution.

1.

RREF

 −2 1 1 −2
−2 −3 −3 0
3 1 1 3

 =

 1 0 0 0
0 1 1 0
0 0 0 1


This matrix corresponds to the simpler system

x1 = 0
x2 + x3 = 0

0 = 1

The third equation 0 = 1 indicates that the system has no solutions. The
solution set is ∅.

2.

RREF

 −5 3 14 1
3 −2 −9 0
−1 2 7 −4

 =

 1 0 −1 −2
0 1 3 −3
0 0 0 0


This matrix corresponds to the simpler system

x1 − x3 = −2
x2 + 3x3 = −3

0 = 0
.

Since there are three variables and two nontrivial equations, the solution
set has infinitely-many solutions.

3.

RREF

 0 1 2 −5
−1 −4 −4 11
−1 −4 −3 8

 =

 1 0 0 −3
0 1 0 1
0 0 1 −3


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This matrix corresponds to the simpler system

x1 = −3
x2 = 1

x3 = −3
.

This system has one solution. The solution set is


 −3

1
−3

.

□
Example B.1.4 LE4. Consider the following vector equation.

x1

 −3
0
4

+ x2

 −3
0
4

+ x3

 0
1
0

+ x4

 −4
−5
5

 =

 −11
−9
14


1. Explain how to find a simpler system or vector equation that has the

same solution set.

2. Explain how to describe this solution set using set notation.

Solution. First, we compute

RREF

 −3 −3 0 −4 −11
0 0 1 −5 −9
4 4 0 5 14

 =

 1 1 0 0 1
0 0 1 0 1
0 0 0 1 2

 .

This corresponds to the simpler system

x1 + x2 = 1
x3 = 1

x4 = 2
.

Since the second column is a non-pivot column, we let x2 = a. Making this
substitution and then solving for x1, x3, and x4 produces the system

x1 = 1− a
x2 = a
x3 = 1
x4 = 2

Thus, the solution set is




−a+ 1
a
1
2


∣∣∣∣∣∣∣∣ a ∈ R

. □

Example B.1.5 EV1.
1. Write a statement involving the solutions of a vector equation that’s

equivalent to each claim below.

•

 −13
3

−13

is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

.
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•

 −13
3

−15

is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

.

2. Use these statements to determine if each vector is or is not a linear
combination. If it is, give an example of such a linear combination.

Solution.

•

 −13
3

−13

is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5


exactly when the vector equation

x1

 1
0
1

+ x2

 2
0
2

+ x3

 3
0
3

+ x4

 −5
1
−5

 =

 −13
3

−13


has a solution. To solve this vector equation, we compute

RREF

 1 2 3 −5 −13
0 0 0 1 3
1 2 3 −5 −13

 =

 1 2 3 0 2
0 0 0 1 3
0 0 0 0 0

 .

We see that this vector equation has solution set




2− 2a− 3b
a
b
3


∣∣∣∣∣∣∣∣ a, b ∈ R

,

so

 −13
3

−13

 is a linear combination; for example, 2

 1
0
1

+3

 −5
1
−5

 = −13
3

−13



•

 −13
3

−15

 is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5


exactly when the vector equation

x1

 1
0
1

+ x2

 2
0
2

+ x3

 3
0
3

+ x4

 −5
1
−5

 =

 −13
3

−15


has a solution. To solve this vector equation, we compute

RREF

 1 2 3 −5 −13
0 0 0 1 3
1 2 3 −5 −15

 =

 1 2 3 0 0
0 0 0 1 0
0 0 0 0 1

 .

This vector equation has no solution, so

 −13
3

−15

 is not a linear combi-

nation.

□
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Example B.1.6 EV2.
1. Write a statement involving the solutions of a vector equation that’s

equivalent to each claim below.

• The set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 spans

R4.

• The set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 does

not span R4.

2. Explain how to determine which of these statements is true.

Solution. The set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 spans

R4 exactly when the vector equation

x1


1
−1
2
0

+ x2


3
−2
3
3

+ x3


10
−7
11
9

+ x4


−6
3
−3
−9

 = v⃗

has a solution for all v⃗ ∈ R4. If there is some vector v⃗ ∈ R4 for which this
vector equation has no solution, then the set does not span R4. To answer this,
we compute

RREF


1 3 10 −6
−1 −2 −7 3
2 3 11 −3
0 3 9 −9

 =


1 0 1 3
0 1 3 −3
0 0 0 0
0 0 0 0

 .

We see that for some v⃗ ∈ R4, this vector equation will not have a solution, so

the set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 does not span R4.

□
Example B.1.7 EV3. Consider the following two sets of Euclidean vectors.

W =




x
y
z
w


∣∣∣∣∣∣∣∣x+ y = 3z + 2w

 U =




x
y
z
w


∣∣∣∣∣∣∣∣x+ y = 3z + w2


Explain why one of these sets is a subspace of R3, and why the other is not.

Solution. To show that W is a subspace, let v⃗ =


x1

y1
z1
w1

 ∈ W and w⃗ =
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x2

y2
z2
w2

 ∈ W , so we know that x1 + y1 = 3z1 + 2w1 and x2 + y2 = 3z2 + 2w2.

Consider 
x1

y1
z1
w1

+


x2

y2
z2
w2

 =


x1 + x2

y1 + y2
z1 + z2
w1 + w2

 .

To see if v⃗ + w⃗ ∈ W , we need to check if (x1 + x2) + (y1 + y2) = 3(z1 + z2) +
2(w1 + w2). We compute

(x1 + x2) + (y1 + y2) = (x1 + y1) + (x2 + y2) by regrouping
= (3z1 + 2w1) + (3z2 + 2w2) since
= 3(z1 + z2) + 2(w1 + w2) by regrouping.

Thus v⃗ + w⃗ ∈ W , so W is closed under vector addition.
Now consider

cv⃗ =


cx1

cy1
cz1
cw1

 .

Similarly, to check that cv⃗ ∈ W , we need to check if cx1+cy1 = 3(cz1)+2(cw1),
so we compute

cx1 + cy1 = c(x1 + y1) by factoring
= c(3z1 + 2w1) since
= 3(cz1) + 2(cw1) by regrouping

and we see that cv⃗ ∈ W , so W is closed under scalar multiplication. Therefore
W is a subspace of R3.

Now, to show U is not a subspace, we will show that it is not closed under
vector addition.

• (Solution Method 1) Now let v⃗ =


x1

y1
z1
w1

 ∈ U and w⃗ =


x2

y2
z2
w2

 ∈ U , so

we know that x1 + y1 = 3z1 + w2
1 and x2 + y2 = 3z2 + w2

2.
Consider

v⃗ + w⃗ =


x1

y1
z1
w1

+


x2

y2
z2
w2

 =


x1 + x2

y1 + y2
z1 + z2
w1 + w2

 .

To see if v⃗ + w⃗ ∈ U , we need to check if (x1 + x2) + (y1 + y2) = 3(z1 +
z2) + (w1 + w2)

2. We compute

(x1 + x2) + (y1 + y2) = (x1 + y1) + (x2 + y2) by regrouping
= (3z1 + w2

1) + (3z2 + w2
2) since

= 3(z1 + z2) + (w2
1 + w2

2) by regrouping

and thus v⃗+ w⃗ ∈ U \textbf{only when} w2
1+w2

2 = (w1+w2)
2. Since this

is not true in general, U is not closed under vector addition, and thus
cannot be a subspace.
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• (Solution Method 2) Note that the vector v⃗ =


0
1
0
1

 belongs to U since

0 + 1 = 3(0) + 12. However, the vector 2v⃗ =


0
2
0
2

 does not belong

to U since 0 + 2 6= 3(0) + 22. Therefore U is not closed under scalar
multiplication, and thus is not a subspace.

□
Example B.1.8 EV4.

1. Write a statement involving the solutions of a vector equation that’s
equivalent to each claim below.

• The set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly inde-

pendent.

• The set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly depen-

dent.

2. Explain how to determine which of these statements is true.

Solution. The set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly inde-

pendent exactly when the vector equation

x1


1
3
4
−4

+ x2


−1
−3
−4
4

+ x3


0
1
3
−3

 =


0
0
0
0


has no non-trivial (i.e. nonzero) solutions. The set is linearly dependent when
there exists a nontrivial (i.e. nonzero) solution. We compute

RREF


1 −1 0
3 −3 1
4 −4 3
−4 4 −3

 =


1 −1 0
0 0 1
0 0 0
0 0 0

 .

Thus, this vector equation has a solution set


 a

a
0

 ∣∣∣∣∣∣ a ∈ R

. Since there

are nontrivial solutions, we conclude that the set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3




is linearly dependent. □
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Example B.1.9 EV5.
1. Write a statement involving spanning and independence properties that’s

equivalent to each claim below.

• The set of vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is a

basis of R4.

• The set of vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is not

a basis of R4.

2. Explain how to determine which of these statements is true.

Solution. The set of vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is

a basis of R4 exactly when it is linearly independent and the set spans R4. If
it is either linearly dependent, or the set does not span R4, then the set is not
a basis.

To answer this, we compute

RREF


1 0 3 −2
3 1 11 −7
4 3 18 −11
−4 −3 −18 11

 =


1 0 3 −2
0 1 2 −1
0 0 0 0
0 0 0 0

 .

We see that this set of vectors is linearly dependent, so therefore the set of

vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is not a basis. □

Example B.1.10 EV6. Consider the subspace

W = span




1
−3
−1
2

 ,


1
0
1
−2

 ,


3
−6
−1
2

 ,


1
6
1
−1

 ,


2
3
0
1


 .

1. Explain how to find a basis of W .

2. Explain how to find the dimension of W .

Solution.

1. Observe that

RREF


1 1 3 1 2
−3 0 −6 6 3
−1 1 −1 1 0
2 −2 2 −1 1

 =


1 0 2 0 1
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0


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If we remove the vectors yielding non-pivot columns, the resulting set
will span the same vectors while being linearly independent. Therefore


1
−3
−1
2

 ,


1
0
1
−2

 ,


1
6
1
−1




is a basis of W .

2. Since this (and thus every other) basis has three vectors in it, the dimen-
sion of W is 3.

□
Example B.1.11 EV7. Consider the homogeneous system of equations

x1 + x2 +3x3 + x4 +2x5 =0

−3x1 − 6x3 +6x4 +3x5 =0

−x1 + x2 − x3 + x4 =0

2x1 − 2x2 +2x3 − x4 + x5 =0

1. Find the solution space of the system.

2. Find a basis of the solution space.

Solution.
1. Observe that

RREF


1 1 3 1 2 0
−3 0 −6 6 3 0
−1 1 −1 1 0 0
2 −2 2 −1 1 0

 =


1 0 2 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0


Letting x3 = a and x5 = b (since those correspond to the non-pivot
columns), this is equivalent to the system

x1 +2x3 +x5 =0

x2 + x3 =0

x3 =a

x4 +x5 =0

x5 =b

Thus, the solution set is


−2a− b

−a
a
−b
b


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R

 .

2. Since we can write
−2a− b

−a
a
−b
b

 = a


−2
−1
1
0
0

+ b


−1
0
0
−1
1

 ,
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a basis for the solution space is


−2
−1
1
0
0

 ,


−1
0
0
−1
1


 .

□
Example B.1.12 AT1. Consider the following maps of polynomials S : P →
P and T : P → P defined by

S(f(x)) = 3xf(x) and T (f(x)) = 3f ′(x)f(x).

Explain why one of these maps is a linear transformation, and why the other
map is not.
Solution. To show S is a linear transformation, we must show two things:

S (f(x) + g(x)) = S(f(x)) + s(g(x))

S(cf(x)) = cS(f(x))

To show S respects addition, we compute

S (f(x) + g(x)) = 3x (f(x) + g(x)) by definition of

= 3xf(x) + 3xg(x) by distributing

But note that S(f(x)) = 3xf(x) and S(g(x)) = 3xg(x), so we have S(f(x) +
g(x)) = S(f(x)) + S(g(x)).

For the second part, we compute

S (cf(x)) = 3x (cf(x)) by definition of

= 3cxf(x) rewriting the multiplication.

But note that cS(f(x)) = c(3xf(x)) = 3cxf(x) as well, so we have S(cf(x)) =
cS(f(x)). Now, since S respects both addition and scalar multiplication, we
can conclude S is a linear transformation.

• (Solution method 1) As for T , we compute

T (f(x) + g(x)) = 3(f(x) + g(x))′(f(x) + g(x)) by definition of
= 3(f ′(x) + g′(x))(f(x) + g(x)) since the derivative is linear
= 3f(x)f ′(x) + 3f(x)g′(x) + 3f ′(x)g(x) + 3g(x)g′(x) by distributing

However, note that T (f(x)) + T (g(x)) = 3f ′(x)f(x) + 3g′(x)g(x), which
is not always the same polynomial (for example, when f(x) = g(x) = x).
So we see that T (f(x)+g(x)) 6= T (f(x))+T (g(x)), so T does not respect
addition and is therefore not a linear transformation.

• (Solution method 2) As for T , we may choose the polynomial f(x) = x
and scalar c = 2. Then

T (cf(x)) = T (2x) = 3(2x)′(2x) = 3(2)(2x) = 12x.
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But on the other hand,

cT (f(x)) = 2T (x) = 2(3)(x)′(x) = 2(3)(1)(x) = 6x.

Since this isn’t the same polynomial, T does not preserve multiplication
and is therefore not a linear transformation.

□
Example B.1.13 AT2.

1. Find the standard matrix for the linear transformation T : R3 → R4

given by

T

 x
y
z

 =


−x+ y

−x+ 3y − z
7x+ y + 3z

0

 .

2. Let S : R4 → R3 be the linear transformation given by the standard
matrix  2 3 4 1

0 1 −1 −1
3 −2 −2 4

 .

Compute S




−2
1
3
2


.

Solution.
1. Since

T

 1
0
0

 =


−1
−1
7
0



T

 0
1
0

 =


1
3
1
0



T

 0
0
1

 =


0
−1
3
0

 ,

the standard matrix for T is


−1 1 0
−1 3 −1
7 1 3
0 0 0

.

2.

S




−2
1
3
2


 = −2S(e⃗1) + S(e⃗2) + 3S(e⃗3) + 2S(e⃗4)

= −2

 2
0
3

+

 3
1
−2

+ 3

 4
−1
−2

+ 2

 1
−1
4

 =

 13
−4
−6

 .

□
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Example B.1.14 AT3. Let T : R4 → R3 be the linear transformation given
by

T




x
y
z
w


 =

 x+ 3y + 2z − 3w
2x+ 4y + 6z − 10w
x+ 6y − z + 3w


1. Explain how to find the image of T and the kernel of T .

2. Explain how to find a basis of the image of T and a basis of the kernel
of T .

3. Explain how to find the rank and nullity of T, and why the rank-nullity
theorem holds for T.

Solution.

1. To find the image we compute

Im(T ) = T (span {e⃗1, e⃗2, e⃗3, e⃗4})

= span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)}

= span


 1

2
1

 ,

 3
4
6

 ,

 2
6
−1

 ,

 −3
−10
3

 .

2. The kernel is the solution set of the corresponding homogeneous system
of equations, i.e.

x+3y+2z− 3w = 0

2x+4y+6z−10w = 0

x+6y− z+ 3w =0.

So we compute

RREF

 1 3 2 −3 0
2 4 6 −10 0
1 6 −1 3 0

 =

 1 0 5 −9 0
0 1 −1 2 0
0 0 0 0 0

 .

Then, letting z = a and w = b we have

kerT =




−5a+ 9b
a− 2b

a
b


∣∣∣∣∣∣∣∣ a, b ∈ R

 .

3. Since Im(T ) = span


 1

2
1

 ,

 3
4
6

 ,

 2
6
−1

 ,

 −3
−10
3

, we simply

need to find a linearly independent subset of these four spanning vectors.
So we compute

RREF

 1 3 2 −3
2 4 6 −10
1 6 −1 3

 =

 1 0 5 −9
0 1 −1 2
0 0 0 0

 .
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Since the first two columns are pivot columns, they form a linearly inde-

pendent spanning set, so a basis for ImT is


 1

2
1

 ,

 3
4
6

 .

To find a basis for the kernel, note that

kerT =




−5a+ 9b
a− 2b

a
b


∣∣∣∣∣∣∣∣ a, b ∈ R


=

a


−5
1
1
0

+ b


9
−2
0
1


∣∣∣∣∣∣∣∣ a, b ∈ R


= span




−5
1
1
0

 ,


9
−2
0
1


 .

so a basis for the kernel is


−5
1
1
0

 ,


9
−2
0
1


 .

4. The dimension of the image (the rank) is 2, the dimension of the kernel
(the nullity) is 2, and the dimension of the domain of T is 4, so we see
2 + 2 = 4, which verifies that the sum of the rank and nullity of T is the
dimension of the domain of T .

□
Example B.1.15 AT4. Let T : R4 → R3 be the linear transformation given

by the standard matrix

 1 3 2 −3
2 4 6 −10
1 6 −1 3

.

1. Explain why T is or is not injective.

2. Explain why T is or is not surjective.

Solution. Compute

RREF

 1 3 2 −3
2 4 6 −10
1 6 −1 3

 =

 1 0 5 −9
0 1 −1 2
0 0 0 0

 .

1. Note that the third and fourth columns are non-pivot columns, which
means kerT contains infinitely many vectors, so T is not injective.

2. Since there are only two pivots, the image (i.e. the span of the columns)
is a 2-dimensional subspace (and thus does not equal R3), so T is not
surjective.

□
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Example B.1.16 AT5. Let V be the set of all pairs of numbers (x, y) of
real numbers together with the following operations:

(x1, y1)⊕ (x2, y2) = (2x1 + 2x2, 2y1 + 2y2)

c� (x, y) = (cx, c2y)

1. Show that scalar multiplication distributes over vector addition:
c� ((x1, y1)⊕ (x2, y2)) = c� (x1, y1)⊕ c� (x2, y2)

2. Explain why V nonetheless is not a vector space.

Solution.
1. We compute both sides:

c� ((x1, y1)⊕ (x2, y2)) = c� (2x1 + 2x2, 2y1 + 2y2)

= (c(2x1 + 2x2), c
2(2y1 + 2y2))

= (2cx1 + 2cx2, 2c
2y1 + 2c2y2)

and
c� (x1, y1)⊕ c� (x2, y2) = (cx1, c

2y1)⊕ (cx2, c
2y2)

= (2cx1 + 2cx2, 2c
2y1 + 2c2y2)

Since these are the same, we have shown that the property holds.

2. To show V is not a vector space, we must show that it fails one of the
8 defining properties of vector spaces. We will show that scalar multipli-
cation does not distribute over scalar addition, i.e., there are values such
that

(c+ d)� (x, y) 6= c� (x, y)⊕ d� (x, y)

• (Solution method 1) First, we compute
(c+ d)� (x, y) = ((c+ d)x, (c+ d)2y)

= ((c+ d)x, (c2 + 2cd+ d2)y).

Then we compute
c� (x, y)⊕ d� (x, y) = (cx, c2y)⊕ (dx, d2y)

= (2cx+ 2dx, 2c2y + 2d2y).

Since (c+ d)x 6= 2cx+ 2dy when c, d, x, y = 1, the property fails to
hold.

• (Solution method 2) When we let c, d, x, y = 1, we may simplify
both sides as follows.

(c+ d)� (x, y) = 2� (1, 1)

= (2 · 1, 22 · 1)
= (2, 4)

c� (x, y)⊕ d� (x, y) = 1� (1, 1)⊕ 1� (1, 1)

= (1 · 1, 12 · 1)⊕ (1 · 1, 12 · 1)
= (1, 1)⊕ (1, 1)

= (2 · 1 + 2 · 1, 2 · 1 + 2 · 1)
= (4, 4)

Since these ordered pairs are different, the property fails to hold.

□
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Example B.1.17 AT6.
1. Given the set{

x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5
}

write a statement involving the solutions to a polynomial equation that’s
equivalent to each claim below.

• The set of polynomials is linearly independent.
• The set of polynomials is linearly dependent.

2. Explain how to determine which of these statements is true.

Solution. The set of polynomials{
x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5

}
is linearly independent exactly when the polynomial equation

y1
(
x3 − 2x2 + x+ 2

)
+y2

(
2x2 − 1

)
+y3

(
−x3 + 3x2 + 3x− 2

)
+y4

(
x3 − 6x2 + 9x+ 5

)
= 0

has no nontrivial (i.e. nonzero) solutions. The set is linearly dependent when
this equation has a nontrivial (i.e. nonzero) solution.

To solve this equation, we distribute and then collect coefficients to obtain

(y1 − y3 + y4)x
3+(−2y1 + 2y2 + 3y3 − 6y4)x

2+(y1 + 3y3 + 9y4)x+(2y1 − y2 − 2y3 + 5y4) = 0.

These polynomials are equal precisely when their coefficients are equal, leading
to the system

y1 − y3 + y4 = 0
−2y1 + 2y2 + 3y3 − 6y4 = 0
y1 + + 3y3 + 9y4 = 0
2y1 − y2 − 2y3 + 5y4 = 0

.

To solve this, we compute

RREF


1 0 −1 1 0
−2 2 3 −6 0
1 0 3 9 0
2 −1 −2 5 0

 =


1 0 0 3 0
0 1 0 −3 0
0 0 1 2 0
0 0 0 0 0


The system has (infintely many) nontrivial solutions, so we that the set of

polynomials is linearly dependent. □
Example B.1.18 MX1. Of the following three matrices, only two may be
multiplied.

A =

[
1 −3
0 1

]
B =

[
4 1 2

]
C =

[
0 1 3
1 −2 5

]
Explain which two may be multiplied and why. Then show how to find their
product.
Solution. AC is the only one that can be computed, since C corresponds to
a linear transformation R3 → R2 and A corresponds to a linear transfromation
R2 → R2. Thus the composition AC corresponds to a linear transformation
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R3 → R2 with a 2× 3 standard matrix. We compute

AC (e⃗1) = A

([
0
1

])
= 0

[
1
0

]
+ 1

[
−3
1

]
=

[
−3
1

]

AC (e⃗2) = A

([
1
−2

])
= 1

[
1
0

]
− 2

[
−3
1

]
=

[
7
−2

]

AC (e⃗3) = A

([
3
5

])
= 3

[
1
0

]
+ 5

[
−3
1

]
=

[
−12
5

]
.

Thus
AC =

[
−3 7 −12
1 −2 5

]
.

□
Example B.1.19 MX2. Explain why each of the following matrices is or
is not invertible by disussing its corresponding linear transformation. If the
matrix is invertible, explain how to find its inverse.

D =


−1 1 0 2
−2 5 5 −4
2 −3 −2 0
4 −4 −3 5

 N =


−3 9 1 −11
3 −9 −2 13
3 −9 −3 15
−4 12 2 −16


Solution. We compute

RREF (D) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We see D is bijective, and therefore invertible. To compute the inverse, we
solve Dx⃗ = e⃗1 by computing

RREF


−1 1 0 2 1
−2 5 5 −4 0
2 −3 −2 0 0
4 −4 −3 5 0

 =


1 0 0 0 21
0 1 0 0 38
0 0 1 0 −36
0 0 0 1 −8

 .

Similarly, we solve Dx⃗ = e⃗2 by computing

RREF


−1 1 0 2 0
−2 5 5 −4 1
2 −3 −2 0 0
4 −4 −3 5 0

 =


1 0 0 0 8
0 1 0 0 14
0 0 1 0 −13
0 0 0 1 −3

 .

Similarly, we solve Dx⃗ = e⃗3 by computing

RREF


−1 1 0 2 0
−2 5 5 −4 0
2 −3 −2 0 1
4 −4 −3 5 0

 =


1 0 0 0 23
0 1 0 0 41
0 0 1 0 −39
0 0 0 1 −9

 .
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Similarly, we solve Dx⃗ = e⃗4 by computing

RREF


−1 1 0 2 0
−2 5 5 −4 0
2 −3 −2 0 0
4 −4 −3 5 1

 =


1 0 0 0 −2
0 1 0 0 −4
0 0 1 0 4
0 0 0 1 1

 .

Combining these, we obtain

D−1 =


21 8 23 −2
38 14 41 −4
−36 −13 −39 4
−8 −3 −9 1

 .

We compute

RREF (N) =


1 −3 0 3
0 0 1 −2
0 0 0 0
0 0 0 0

 .

We see N is not bijective and thus is not invertible. □
Example B.1.20 MX3. Use a matrix inverse to solve the following matrix-
vector equation.  1 2 1

0 0 2
1 1 1

 v⃗ =

 4
−2
2


Solution. Using the techniques from section Section 4.3, and letting M = 1 2 1

0 0 2
1 1 1

, we find M−1 =

 −1 −1/2 2
1 0 −1
0 1/2 0

. Our equation can be

written as Mv⃗ =

 4
−2
2

, and may therefore be solved via

v⃗ = Iv⃗ = M−1Mv⃗ = M−1

 4
−2
2

 =

 1
2
−1


□

Example B.1.21 MX4. Let A be a 4× 4 matrix.
1. Give a 4 × 4 matrix P that may be used to perform the row operation

R3 → R3 + 4R1.

2. Give a 4 × 4 matrix Q that may be used to perform the row operation
R1 → −4R1.

3. Use matrix multiplication to describe the matrix obtained by applying
R3 → 4R1 +R3 and then R1 → −4R1 to A (note the order).

Solution.

1. P =


1 0 0 0
0 1 0 0
4 0 1 0
0 0 0 1


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2. Q =


−4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


3. QPA

□
Example B.1.22 GT1. Let A be a 4× 4 matrix with determinant −7.

1. Let B be the matrix obtained from A by applying the row operation
R3 → R3 + 3R4. What is det(B)?

2. Let C be the matrix obtained from A by applying the row operation
R2 → −3R2. What is det(C)?

3. Let D be the matrix obtained from A by applying the row operation
R3 ↔ R4. What is det(D)?

Solution.

1. Adding a multiple of one row to another row does not change the deter-
minant, so det(B) = det(A) = −7.

2. Scaling a row scales the determinant by the same factor, so so det(B) =
−3det(A) = −3(−7) = 21.

3. Swaping rows changes the sign of the determinant, so det(B) = −det(A) =
7.

□
Example B.1.23 GT2. Show how to compute the determinant of the matrix

A =


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5


Solution. Here is one possible solution, first applying a single row operation,
and then performing Laplace/cofactor expansions to reduce the determinant
to a linear combination of 2× 2 determinants:

det


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 1
1 1 1 3
−3 1 2 −5

 = (−1)det

 1 3 −1
1 1 3
−3 1 −5

+ (1) det

 1 3 0
1 1 1
−3 1 2


= (−1)

(
(1)det

[
1 3
1 −5

]
− (1)det

[
3 −1
1 −5

]
+ (−3)det

[
3 −1
1 3

])
+

(1)

(
(1)det

[
1 1
1 2

]
− (3)det

[
1 1
−3 2

])
= (−1) (−8 + 14− 30) + (1) (1− 15)

= 10

Here is another possible solution, using row and column operations to first
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reduce the determinant to a 3× 3 matrix and then applying a formula:

det


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 1
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 0
1 1 1 2
−3 1 2 −7



= −det


1 3 0 −1
1 1 1 2
0 0 1 0
−3 1 2 −7

 = −det

 1 3 −1
1 1 2
−3 1 −7


= −((−7− 18− 1)− (3 + 2− 21))

= 10

□
Example B.1.24 GT3. Explain how to find the eigenvalues of the matrix[

−2 −2
10 7

]
.

Solution. Compute the characteristic polynomial:

det(A− λI) = det
[

−2− λ −2
10 7− λ

]
= (−2− λ)(7− λ) + 20 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3)

The eigenvalues are the roots of the characteristic polynomial, namely 2 and 3.
□

Example B.1.25 GT4. Explain how to find a basis for the eigenspace
associated to the eigenvalue 3 in the matrix −7 −8 2

8 9 −1
13
2 5 2

 .

Solution. The eigenspace associated to 3 is the kernel of A − 3I, so we
compute

RREF(A− 3I) = RREF

 −7− 3 −8 2
8 9− 3 −1
13
2 5 2− 3

 =

RREF

 −10 −8 2
8 6 −1
13
2 5 −1

 =

 1 0 1
0 1 − 3

2
0 0 0

 .

Thus we see the kernel is 
 −a

3
2a
a

 ∣∣∣∣∣∣ a ∈ R


which has a basis of


 −1

3
2
1

. □
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B.2 Definitions

Section 1.1 Linear Systems, Vector Equations, and Augmented Matrices (LE1)
Definition 1.1.1
Definition 1.1.3
Definition 1.1.6
Definition 1.1.13

Section 1.2 Row Reduction of Matrices (LE2)
Definition 1.2.1
Definition 1.2.3
Definition 1.2.6

Section 1.4 Linear Systems with Infinitely-Many Solutions (LE4)
Definition 1.4.2

Section 2.1 Linear Combinations (EV1)
Definition 2.1.2
Definition 2.1.3

Section 2.3 Subspaces (EV3)
Definition 2.3.1

Section 2.4 Linear Independence (EV4)
Definition 2.4.2

Section 2.5 Identifying a Basis (EV5)
Definition 2.5.3
Definition 2.5.7

Section 2.6 Subspace Basis and Dimension (EV6)
Definition 2.6.3
Definition 2.6.8

Section 2.7 Homogeneous Linear Systems (EV7)
Definition 2.7.1

Section 3.1 Linear Transformations (AT1)
Definition 3.1.1
Definition 3.1.2

Section 3.2 Standard Matrices (AT2)
(Continued on next page)
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Definition 3.2.7

Section 3.3 Image and Kernel (AT3)
Definition 3.3.2
Definition 3.3.7

Section 3.4 Injective and Surjective Linear Maps (AT4)
Definition 3.4.1
Definition 3.4.4
Definition 3.4.11

Section 3.5 Vector Spaces (AT5)
Definition 3.5.6

Section 4.1 Matrices and Multiplication (MX1)
Definition 4.1.3

Section 4.2 The Inverse of a Matrix (MX2)
Definition 4.2.2
Definition 4.2.6

Section 5.1 Row Operations and Determinants (GT1)
Definition 5.1.13

Section 5.3 Eigenvalues and Characteristic Polynomials (GT3)
Definition 5.3.4
Definition 5.3.7

Section 5.4 Eigenvectors and Eigenspaces (GT4)
Definition 5.4.2

Section A.1 Civil Engineering: Trusses and Struts
Definition A.1.1

Section A.3 Geology: Phases and Components
Definition A.3.1
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linearly independent, 33

non-singular, 48
nontrivial, 115

pivot, 8

rank, 81
Reduced row echelon form, 8
row operations, 7
row space, 81

scalar, 74
solution set, 2
span, 20
standard, 39
standard matrix, 56
subspace, 28
symmetric matrix, 33
system of linear equations, 2

vector, 74
Euclidean, 2

vector equation, 3
vector space, 28, 74
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