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Chapter 1

Systems of Linear Equations
(LE)

Learning Outcomes
How can we solve systems of linear equations?
By the end of this chapter, you should be able to...

1. Translate back and forth between a system of linear equations, a vector
equation, and the corresponding augmented matrix.

2. Explain why a matrix isn’t in reduced row echelon form, and put a
matrix in reduced row echelon form.

3. Determine the number of solutions for a system of linear equations or
a vector equation.

4. Compute the solution set for a system of linear equations or a vector
equation with infinitely many solutions.

1



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

1.1 Linear Systems, Vector Equations, and Aug-
mented Matrices (LE1)

Learning Outcomes
• Translate back and forth between a system of linear equations, a vector

equation, and the corresponding augmented matrix.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.1 A Euclidean vector is an ordered list of real numbers
a1
a2
...
an

 .

We will find it useful to almost always typeset Euclidean vectors vertically,
but the notation

[
a1 a2 · · · an

]T is also valid when vertical typesetting is
inconvenient. The set of all Euclidean vectors with n components is denoted
as Rn, and vectors are often described using the notation v⃗.

Each number in the list is called a component, and we use the following
definitions for the sum of two vectors, and the product of a real number and
a vector:

a1
a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 c


a1
a2
...
an

 =


ca1
ca2
...

can


♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Example 1.1.2 Following are some examples of addition and scalar multi-
plication in R4. 

3
−3
0
4

+


0
2
7
1

 =


3 + 0
−3 + 2
0 + 7
4 + 1

 =


3
−1
7
5



−4


0
2
−2
3

 =


−4(0)
−4(2)
−4(−2)
−4(3)

 =


0
−8
8

−12


□



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.3 A linear equation is an equation of the variables xi of
the form

a1x1 + a2x2 + · · ·+ anxn = b.
A solution for a linear equation is a Euclidean vector

s1
s2
...
sn


that satisfies

a1s1 + a2s2 + · · ·+ ansn = b

(that is, a Euclidean vector whose components can be plugged into the equa-
tion). ♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.4 In previous classes you likely used the variables x, y, z in
equations. However, since this course often deals with equations of four or
more variables, we will often write our variables as xi, and assume x = x1, y =
x2, z = x3, w = x4 when convenient.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.5 A system of linear equations (or a linear system for
short) is a collection of one or more linear equations.

a11x1+ a12x2+ . . .+ a1nxn = b1
a21x1+ a22x2+ . . .+ a2nxn = b2

... ... ... ...
am1x1+ am2x2+ . . .+ amnxn = bm

Its solution set is given by


s1
s2
...
sn


∣∣∣∣∣∣∣∣


s1
s2
...
sn

 is a solution to all equations in the system

 .

♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.6 When variables in a large linear system are missing, we prefer
to write the system in one of the following standard forms:
Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1+0x2+3x3 = 3

3x1− 2x2+4x3 = 0

0x1− 1x2+1x3 =−2

Concise standard form:

x1 +3x3 = 3

3x1− 2x2+4x3 = 0

− x2+ x3 =−2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.7 It will often be convenient to think of a system of equations
as a vector equation.

By applying vector operations and equating components, it is straightfor-
ward to see that the vector equation

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


is equivalent to the system of equations

x1 +3x3 = 3

3x1− 2x2+4x3 = 0

− x2+ x3 =−2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.8 A linear system is consistent if its solution set is non-
empty (that is, there exists a solution for the system). Otherwise it is incon-
sistent. ♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Fact 1.1.9 All linear systems are one of the following:

1. Consistent with one solution: its solution set contains a single vector,

e.g.


 1

2
3


2. Consistent with infinitely-many solutions: its solution set contains in-

finitely many vectors, e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


3. Inconsistent: its solution set is the empty set, denoted by either {} or

∅.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.10 All inconsistent linear systems contain a logical contradic-
tion. Find a contradiction in this system to show that its solution set is the
empty set.

−x1 + 2x2 = 5

2x1 − 4x2 = 6



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.11 Consider the following consistent linear system.

−x1 + 2x2 = −3

2x1 − 4x2 = 6

(a) Find three different solutions for this system.

(b) Let x2 = a where a is an arbitrary real number, then find an expression

for x1 in terms of a. Use this to write the solution set
{[

?
a

] ∣∣∣∣ a ∈ R
}

for the linear system.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.12 Consider the following linear system.

x1+2x2 − x4 = 3

x3+4x4 =−2

Describe the solution set 


?
a
?
b


∣∣∣∣∣∣∣∣ a, b ∈ R


to the linear system by setting x2 = a and x4 = b, and then solving for x1
and x3.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Observation 1.1.13 Solving linear systems of two variables by graphing
or substitution is reasonable for two-variable systems, but these simple tech-
niques won’t usually cut it for equations with more than two variables or
more than two equations. For example,

−2x1− 4x2+ x3− 4x4 =−8

x1+2x2+2x3+12x4 =−1

x1+2x2+ x3+ 8x4 = 1

has the exact same solution set as the system in the previous activity, but
we’ll want to learn new techniques to compute these solutions efficiently.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.14 The only important information in a linear system are its
coefficients and constants.
Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1+0x2+3x3 = 3

3x1− 2x2+4x3 = 0

0x1− 1x2+1x3 =−2

Coefficients/constants:

1 0 3 | 3

3 −2 4 | 0

0 −1 1 | −2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.15 A system of m linear equations with n variables is of-
ten represented by writing its coefficients and constants in an augmented
matrix.

a11x1+ a12x2+ . . .+ a1nxn = b1
a21x1+ a22x2+ . . .+ a2nxn = b2

... ... ... ...
am1x1+ am2x2+ . . .+ amnxn = bm

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... . . . ... ...

am1 am2 · · · amn bm


♢



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Example 1.1.16 The corresponding augmented matrix for this system is
obtained by simply writing the coefficients and constants in matrix form.
Linear system:

x1 +3x3 = 3

3x1− 2x2+4x3 = 0

− x2+ x3 =−2

Augmented matrix: 1 0 3 3
3 −2 4 0
0 −1 1 −2


Vector equation:

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


□



Row Reduction of Matrices (LE2)

1.2 Row Reduction of Matrices (LE2)

Learning Outcomes
• Explain why a matrix isn’t in reduced row echelon form, and put a

matrix in reduced row echelon form.



Row Reduction of Matrices (LE2)

Definition 1.2.1 Two systems of linear equations (and their corresponding
augmented matrices) are said to be equivalent if they have the same solution
set.

For example, both of these systems share the same solution set
{[

1
1

]}
.

3x1− 2x2 =1

x1+4x2 =5

3x1− 2x2 =1

4x1+2x2 =6

Therefore these augmented matrices are equivalent (even though they’re
not equal), which we denote with ∼:[

3 −2 1
1 4 5

]
̸=

[
3 −2 1
4 2 6

]
[
3 −2 1
1 4 5

]
∼

[
3 −2 1
4 2 6

]
♢



Row Reduction of Matrices (LE2)

Activity 1.2.2 Consider whether these matrix manipulations (A) must keep
or (B) could change the solution set for the corresponding linear system.

(a) Swapping two rows, for example:[
1 2 3
4 5 6

]
∼

[
4 5 6
1 2 3

]
x+ 2y = 3 4x+ 5y = 6

4x+ 5y = 6 x+ 2y = 3

(b) Swapping two columns, for example:[
1 2 3
4 5 6

]
∼

[
2 1 3
5 4 6

]
x+ 2y = 3 2x+ y = 6

4x+ 5y = 6 5x+ 4y = 3

(c) Add a constant to every term of a row, for example:

[
1 2 3
4 5 6

]
∼

[
1 + 6 2 + 6 3 + 6
4 5 6

]
x+ 2y = 3 7x+ 8y = 9

4x+ 5y = 6 4x+ 5y = 3

(d) Multiply a row by a nonzero constant, for example:[
1 2 3
4 5 6

]
∼

[
3 6 9
4 5 6

]
x+ 2y = 3 3x+ 6y = 9

4x+ 5y = 6 4x+ 5y = 3

(e) Add a constant multiple of one row to another row, for example:

[
1 2 3
4 5 6

]
∼

[
1 2 3

4 + 3 5 + 6 6 + 9

]
x+ 2y = 3 ?x+ ? y = ?

4x+ 5y = 6 ?x+ ? y = ?

(f) Replace a column with zeros, for example:[
1 2 3
4 5 6

]
∼

[
1 0 3
4 0 6

]
x+ 2y = 3 ?x+ ? y = ?

4x+ 5y = 6 ?x+ ? y = ?

(g) Replace a row with zeros, for example:



Row Reduction of Matrices (LE2)[
1 2 3
4 5 6

]
∼

[
1 2 3
0 0 0

]
x+ 2y = 3 ?x+ ? y = ?

4x+ 5y = 6 ?x+ ? y = ?



Row Reduction of Matrices (LE2)

Definition 1.2.3 The following three row operations produce equivalent
augmented matrices.

1. Swap two rows, for example, R1 ↔ R2:[
1 2 3
4 5 6

]
∼

[
4 5 6
1 2 3

]
2. Multiply a row by a nonzero constant, for example, 2R1 → R1:[

1 2 3
4 5 6

]
∼

[
2(1) 2(2) 2(3)
4 5 6

]
3. Add a constant multiple of one row to another row, for example, R2 −

4R1 → R2: [
1 2 3
4 5 6

]
∼

[
1 2 3

4− 4(1) 5− 4(2) 6− 4(3)

]
Observe that we will use the following notation: (Combination of old

rows) → (New row). ♢



Row Reduction of Matrices (LE2)

Activity 1.2.4 Each of the following linear systems has the same solution
set.
A)

x+2y+ z =3

−x− y+ z =1

2x+5y+3z =7

B)

2x+5y+3z =7

−x− y+ z =1

x+2y+ z =3

C)

x − z =1

y+2z =4

y+ z =1

D)

x+2y+ z =3

y+2z =4

2x+5y+3z =7

E)

x − z =1

y+ z =1

z =3

F)

x+2y+ z =3

y+2z =4

y+ z =1

Sort these six equivalent linear systems from most complicated to simplest
(in your opinion).



Row Reduction of Matrices (LE2)

Activity 1.2.5 Here we’ve written the sorted linear systems from Activ-
ity 1.2.4 as augmented matrices. 2 5 3 7

−1 −1 1 1
1 2 1 3

 ∼

 1 2 1 3
−1 −1 1 1
2 5 3 7

 ∼

 1 2 1 3
0 1 2 4
2 5 3 7

 ∼

∼

 1 2 1 3
0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1
0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1
0 1 1 1
0 0 −1 −3


Assign the following row operations to each step used to manipulate each
matrix to the next:

R3 − 1R2 → R3 R2 + 1R1 → R2 R1 ↔ R3

R3 − 2R1 → R3 R1 − 2R3 → R1



Row Reduction of Matrices (LE2)

Definition 1.2.6 A matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the
matrix.

Every matrix has a unique reduced row echelon form. If A is a matrix, we
write RREF(A) for the reduced row echelon form of that matrix. ♢



Row Reduction of Matrices (LE2)

Activity 1.2.7 Recall that a matrix is in reduced row echelon form
(RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the
matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF.
For the ones not in RREF, determine which rule is violated and how it might
be fixed.

A =

 1 0 0 3
0 0 1 −1
0 0 0 0

 B =

 1 2 4 3
0 0 1 −1
0 0 0 0

 C =

 0 0 0 0
1 2 0 3
0 0 1 −1





Row Reduction of Matrices (LE2)

Activity 1.2.8 Recall that a matrix is in reduced row echelon form
(RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the
matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF.
For the ones not in RREF, determine which rule is violated and how it might
be fixed.

D =

 1 0 2 −3
0 3 3 −3
0 0 0 0

 E =

 0 1 0 7
1 0 0 4
0 0 0 0

 F =

 1 0 0 4
0 1 0 7
0 0 1 0





Row Reduction of Matrices (LE2)

Remark 1.2.9 In practice, if we simply need to convert a matrix into reduced
row echelon form, we use technology to do so.

However, it is also important to understand the Gauss-Jordan elim-
ination algorithm that a computer or calculator uses to convert a matrix
(augmented or not) into reduced row echelon form. Understanding this al-
gorithm will help us better understand how to interpret the results in many
applications we use it for in Chapter 2.



Row Reduction of Matrices (LE2)

Activity 1.2.10 Consider the matrix 2 6 −1 6
1 3 −1 2
−1 −3 2 0

 .

Which row operation is the best choice for the first move in converting to
RREF?

A. Add row 3 to row 2 (R2 +R3 → R2)

B. Add row 2 to row 3 (R3 +R2 → R3)

C. Swap row 1 to row 2 (R1 ↔ R2)

D. Add -2 row 2 to row 1 (R1 − 2R2 → R1)



Row Reduction of Matrices (LE2)

Activity 1.2.11 Consider the matrix 1 3 −1 2
2 6 −1 6
−1 −3 2 0

 .

Which row operation is the best choice for the next move in converting to
RREF?

A. Add row 1 to row 3 (R3 +R1 → R3)

B. Add -2 row 1 to row 2 (R2 − 2R1 → R2)

C. Add 2 row 2 to row 3 (R3 + 2R2 → R3)

D. Add 2 row 3 to row 2 (R2 + 2R3 → R2)



Row Reduction of Matrices (LE2)

Activity 1.2.12 Consider the matrix 1 3 −1 2
0 0 1 2
0 0 1 2

 .

Which row operation is the best choice for the next move in converting to
RREF?

A. Add row 1 to row 2 (R2 +R1 → R2)

B. Add -1 row 3 to row 2 (R2 −R3 → R2)

C. Add -1 row 2 to row 3 (R3 −R2 → R3)

D. Add row 2 to row 1 (R1 +R2 → R1)



Row Reduction of Matrices (LE2)

Observation 1.2.13 The steps for the Gauss-Jordan elimination algorithm
may be summarized as follows:

1. Ignoring any rows that already have marked pivots, identify the leftmost
column with a nonzero entry.

2. Use row operations to obtain a pivot of value 1 in the topmost row that
does not already have a marked pivot.

3. Mark this pivot, then use row operations to change all values above and
below the marked pivot to 0.

4. Repeat these steps until the matrix is in RREF.

In particular, once a pivot is marked, it should remain in the same position.
This will keep you from undoing your progress towards an RREF matrix.



Row Reduction of Matrices (LE2)

Activity 1.2.14 Complete the following RREF calculation (multiple row
operations may be needed for certain steps):

A =

 2 3 2 3
−2 1 6 1
−1 −3 −4 1

 ∼

 1 ? ? ?
−2 1 6 1
−1 −3 −4 1

 ∼

 1 ? ? ?
0 ? ? ?
0 ? ? ?



∼

 1 ? ? ?
0 1 ? ?
0 ? ? ?

 ∼

 1 0 ? ?
0 1 ? ?
0 0 ? ?

 ∼ · · · ∼

 1 0 −2 0
0 1 2 0
0 0 0 1





Row Reduction of Matrices (LE2)

Activity 1.2.15 Consider the matrix

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Compute RREF(A).



Row Reduction of Matrices (LE2)

Activity 1.2.16 Consider the non-augmented and augmented matrices

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 B =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Can RREF(A) be used to find RREF(B)?

A. Yes, RREF(A) and RREF(B) are exactly the same.

B. Yes, RREF(A) may be slightly modified to find RREF(B).

C. No, a new calculuation is required.



Row Reduction of Matrices (LE2)

Activity 1.2.17 Free browser-based technologies for mathematical compu-
tation are available online.

• Go to https://sagecell.sagemath.org/.

• In the dropdown on the right, you can select a number of different
languages. Select ”Octave” for the Matlab-compatible syntax used by
this text.

• Type rref([1,3,2;2,5,7]) and then press the Evaluate button to com-
pute the RREF of

[
1 3 2
2 5 7

]
.

https://sagecell.sagemath.org/


Row Reduction of Matrices (LE2)

Activity 1.2.18 In the HTML version of this text, code cells are often
embedded for your convenience when RREFs need to be computed.

Try this out to compute RREF
[
2 3 1
3 0 6

]
.



Counting Solutions for Linear Systems (LE3)

1.3 Counting Solutions for Linear Systems (LE3)

Learning Outcomes
• Determine the number of solutions for a system of linear equations or

a vector equation.



Counting Solutions for Linear Systems (LE3)

Remark 1.3.1 We will frequently need to know the reduced row echelon
form of matrices during the remainder of this course, so unless you’re told
otherwise, feel free to use technology (see Activity 1.2.17) to compute RREFs
efficiently.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.2 Consider the following system of equations.

3x1− 2x2+13x3 = 6

2x1− 2x2+10x3 = 2

−x1+3x2− 6x3 =11.

(a) Convert this to an augmented matrix and use technology to compute
its reduced row echelon form:

RREF

 ? ? ? ?
? ? ? ?
? ? ? ?

 =

 ? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original

system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Activity 1.3.3 Consider the vector equation

x1

 3
2
−1

+ x2

 −2
−2
0

+ x3

 13
10
−3

 =

 6
2
1


(a) Convert this to an augmented matrix and use technology to compute

its reduced row echelon form:

RREF

 ? ? ? ?
? ? ? ?
? ? ? ?

 =

 ? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original

system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Activity 1.3.4 What contradictory equations besides 0 = 1 may be obtained
from the RREF of an augmented matrix?

A. x = 0 is an obtainable contradiction

B. x = y is an obtainable contradiction

C. 0 = 17 is an obtainable contradiction

D. 0 = 1 is the only obtainable contradiction



Counting Solutions for Linear Systems (LE3)

Activity 1.3.5 Consider the following linear system.

x1 + 2x2+3x3 = 1

2x1 + 4x2+8x3 = 0

(a) Find its corresponding augmented matrix A and find RREF(A).

(b) Use the RREF matrix to write a linear system equivalent to the original
system.

(c) How many solutions must this system have?

A. Zero B. One C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Fact 1.3.6 We will see in Section 1.4 that the intuition established here
generalizes: a consistent system with more variables than equations (ignoring
0 = 0) will always have infinitely many solutions.



Counting Solutions for Linear Systems (LE3)

Fact 1.3.7 By finding RREF(A) from a linear system’s corresponding aug-
mented matrix A, we can immediately tell how many solutions the system
has.

• If the linear system given by RREF(A) includes the contradiction 0 = 1,
that is, the row

[
0 · · · 0 1

]
, then the system is inconsistent, which

means it has zero solutions and its solution set is written as ∅ or {}.

• If the linear system given by RREF(A) sets each variable of the system
to a single value; that is, x1 = s1, x2 = s2, and so on; then the system

is consistent with exactly one solution

 s1
s2
...

, and its solution set is
 s1

s2
...

.

• Otherwise, the system must have more variables than non-trivial equa-
tions (equations other than 0 = 0). This means it is consistent with
infinitely-many different solutions. We’ll learn how to find such solution
sets in Section 1.4.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.8 For each vector equation, write an explanation for whether
each solution set has no solutions, one solution, or infinitely-many solutions.
If the set is finite, describe it using set notation.

(a)

x1

 1
−1
1

+ x2

 4
−3
1

+ x3

 7
−6
4

 =

 10
−6
4


(b)

x1

 −2
−1
−2

+ x2

 3
1
1

+ x3

 −2
−2
−5

 =

 1
4
13


(c)

x1

 −1
−2
1

+ x2

 −5
−5
4

+ x3

 −7
−9
6

 =

 3
1
−2





Linear Systems with Infinitely-Many Solutions (LE4)

1.4 Linear Systems with Infinitely-Many Solu-
tions (LE4)

Learning Outcomes
• Compute the solution set for a system of linear equations or a vector

equation with infinitely many solutions.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.1 Consider this simplified linear system found to be equivalent
to the system from Activity 1.3.5:

x1 + 2x2 = 4

x3 = −1

Earlier, we determined this system has infinitely-many solutions.

(a) Let x1 = a and write the solution set in the form


 a

?
?

 ∣∣∣∣∣∣ a ∈ R

.

(b) Let x2 = b and write the solution set in the form


 ?

b
?

 ∣∣∣∣∣∣ b ∈ R

.

(c) Which of these was easier? What features of the RREF matrix[
1 2 0 4
0 0 1 −1

]
caused this?



Linear Systems with Infinitely-Many Solutions (LE4)

Definition 1.4.2 Recall that the pivots of a matrix in RREF form are the
leading 1s in each non-zero row.

The pivot columns in an augmented matrix correspond to the bound
variables in the system of equations (x1, x3 below). The remaining variables
are called free variables (x2 below).[

1 2 0 4
0 0 1 −1

]
To efficiently solve a system in RREF form, assign letters to the free variables,
and then solve for the bound variables. ♢



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.3 Find the solution set for the system

2x1− 2x2− 6x3+ x4− x5 = 3

−x1+ x2+3x3−x4+2x5 =−3

x1− 2x2− x3+ x4+ x5 = 2

by doing the following.

(a) Row-reduce its augmented matrix.

(b) Assign letters to the free variables (given by the non-pivot columns):

? = a

? = b

(c) Solve for the bound variables (given by the pivot columns) to show that

? = 1 + 5a+ 2b

? = 1 + 2a+ 3b

? = 3 + 3b

(d) Replace x1 through x5 with the appropriate expressions of a, b in the
following set-builder notation.


x1
x2
x3
x4
x5


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R





Linear Systems with Infinitely-Many Solutions (LE4)

Remark 1.4.4 Don’t forget to correctly express the solution set of a linear
system. Systems with zero or one solutions may be written by listing their
elements, while systems with infinitely-many solutions may be written using
set-builder notation.

• Inconsistent: ∅ or {}

◦ (not 0 or

 0
0
0

)

• Consistent with one solution: e.g.


 1

2
3


◦ (not just

 1
2
3

)

• Consistent with infinitely-many solutions: e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


◦ (not just

 1
2− 3a

a

 )



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.5 Consider the following system of linear equations.

x1

 1
0
1

+ x2

 0
1
−1

+ x3

 −1
5
−5

+ x4

 −3
13
−13

 =

 −3
12
−12

 .

(a) Explain how to find a simpler system or vector equation that has the
same solution set.

(b) Explain how to describe this solution set using set notation.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.6 Consider the following system of linear equations.

x1 − 2x3 = −3
5x1 + x2 − 7x3 = −18
5x1 − x2 − 13x3 = −12
x1 + 3 x2 + 7 x3 = −12

(a) Explain how to find a simpler system or vector equation that has the
same solution set.

(b) Explain how to describe this solution set using set notation.



Chapter 2

Euclidean Vectors (EV)

Learning Outcomes
What is a space of Euclidean vectors?
By the end of this chapter, you should be able to...

1. Determine if a Euclidean vector can be written as a linear combination
of a given set of Euclidean vectors by solving an appropriate vector
equation.

2. Determine if a set of Euclidean vectors spans Rn by solving appropriate
vector equations.

3. Determine if a subset of Rn is a subspace or not.

4. Determine if a set of Euclidean vectors is linearly dependent or inde-
pendent by solving an appropriate vector equation.

5. Explain why a set of Euclidean vectors is or is not a basis of Rn.

6. Compute a basis for the subspace spanned by a given set of Euclidean
vectors, and determine the dimension of the subspace.

7. Find a basis for the solution set of a homogeneous system of equations.

55



Linear Combinations (EV1)

2.1 Linear Combinations (EV1)

Learning Outcomes
• Determine if a Euclidean vector can be written as a linear combination

of a given set of Euclidean vectors by solving an appropriate vector
equation.



Linear Combinations (EV1)

Note 2.1.1 We’ve been working with Euclidean vector spaces of the form

Rn =




x1
x2
...
xn


∣∣∣∣∣∣∣∣x1, x2, . . . , xn ∈ R

 .

There are other kinds of vector spaces as well (e.g. polynomials, matrices),
which we will investigate in Section 3.5. But understanding the structure
of Euclidean vectors on their own will be beneficial, even when we turn our
attention to other kinds of vectors.

Likewise, when we multiply a vector by a real number, as in −3

 1
−1
2

 = −3
3
−6

, we refer to this real number as a scalar.



Linear Combinations (EV1)

Definition 2.1.2 A linear combination of a set of vectors {v⃗1, v⃗2, . . . , v⃗m} is
given by c1v⃗1+c2v⃗2+· · ·+cmv⃗m for any choice of scalar multiples c1, c2, . . . , cm.

For example, we can say

 3
0
5

 is a linear combination of the vectors 1
−1
2

 and

 1
2
1

 since

 3
0
5

 = 2

 1
−1
2

+ 1

 1
2
1

 .

♢



Linear Combinations (EV1)

Definition 2.1.3 The span of a set of vectors is the collection of all linear
combinations of that set:

span{v⃗1, v⃗2, . . . , v⃗m} = {c1v⃗1 + c2v⃗2 + · · ·+ cmv⃗m | ci ∈ R} .

For example:

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R

 .

♢



Linear Combinations (EV1)

Activity 2.1.4 Consider span
{[

1
2

]}
.

(a) Sketch the four Euclidean vectors

1

[
1
2

]
=

[
1
2

]
, 3

[
1
2

]
=

[
3
6

]
, 0

[
1
2

]
=

[
0
0

]
, −2

[
1
2

]
=

[
−2
−4

]
in the xy plane by placing a dot at the (x, y) coordinate associated with
each vector.

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane by plotting their (x, y) coordinates as dots. What best
describes this sketch?

A. A line B. A plane C. A parabola D. A circle



Linear Combinations (EV1)

Remark 2.1.5 It is important to remember that

{v⃗1, v⃗2, . . . , v⃗m} ̸= span{v⃗1, v⃗2, . . . , v⃗m}.

For example, 
 1

−1
2

 ,

 1
2
1


is a set containing exactly two vectors, while

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R


is a set containing infinitely-many vectors.



Linear Combinations (EV1)

Activity 2.1.6 Consider span
{[

1
2

]
,

[
−1
1

]}
.

(a) Sketch the following five Euclidean vectors in the xy plane.

1

[
1
2

]
+0

[
−1
1

]
= ? 0

[
1
2

]
+1

[
−1
1

]
= ? 1

[
1
2

]
+1

[
−1
1

]
= ?

−2

[
1
2

]
+ 1

[
−1
1

]
= ? − 1

[
1
2

]
+−2

[
−1
1

]
= ?

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]
,

[
−1
1

]}
=

{
a

[
1
2

]
+ b

[
−1
1

] ∣∣∣∣ a, b ∈ R
}

in the xy plane. What best describes this sketch?

A. A line B. A plane C. A parabola D. A circle



Linear Combinations (EV1)

Activity 2.1.7 Sketch a representation of all the vectors belonging to
span

{[
6
−4

]
,

[
−3
2

]}
in the xy plane. What best describes this sketch?

A. A line

B. A plane

C. A parabola

D. A cube



Linear Combinations (EV1)

Activity 2.1.8 Consider the following questions to discover whether a Eu-
clidean vector belongs to a span.

(a) The Euclidean vector

 −1
−6
1

 belongs to span


 1

0
−3

 ,

 −1
−3
2

 ex-

actly when there exists a solution to which of these vector equations?

A. x1

 −1
−6
1

+ x2

 1
0
−3

 =

 −1
−3
2


B. x1

 1
0
−3

+ x2

 −1
−3
2

 =

 −1
−6
1


C. x1

 −1
−3
2

+ x2

 −1
−6
1

+ x3

 1
0
−3

 = 0

(b) Use technology to find RREF of the corresponding augmented matrix,
and then use that matrix to find the solution set of the vector equation.

(c) Given this solution set, does

 −1
−6
1

 belong to

span


 1

0
−3

 ,

 −1
−3
2

?



Linear Combinations (EV1)

Observation 2.1.9 The following are all equivalent statements:

• The vector b⃗ belongs to span{v⃗1, . . . , v⃗n}.

• The vector b⃗ is a linear combination of the vectors v⃗1, . . . , v⃗n.

• The vector equation x1v⃗1 + · · ·+ xnv⃗n = b⃗ is consistent.

• The linear system corresponding to
[
v⃗1 . . . v⃗n | b⃗

]
is consistent.

• RREF
[
v⃗1 . . . v⃗n | b⃗

]
doesn’t have a row [0 · · · 0 | 1] representing the con-

tradiction 0 = 1.



Linear Combinations (EV1)

Activity 2.1.10 Consider this claim about a vector equation: −6
2
−6

is a linear combination of the vectors 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s
equivalent to this claim.

(b) Explain why the statement you wrote is true.

(c) Since your statement was true, use the solution set to describe a

linear combination of

 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

 that equals −6
2
−6

.



Linear Combinations (EV1)

Activity 2.1.11 Consider this claim about a vector equation: −5
−1
−7

 belongs to span


 1

0
2

 ,

 3
0
6

 ,

 2
0
4

 ,

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s
equivalent to this claim.

(b) Explain why the statement you wrote is false, to conclude that the
vector does not belong to the span.



Spanning Sets (EV2)

2.2 Spanning Sets (EV2)

Learning Outcomes
• Determine if a set of Euclidean vectors spans Rn by solving appropriate

vector equations.



Spanning Sets (EV2)

Observation 2.2.1 Any single non-zero vector/number x in R1 spans R1,
since R1 = {cx | c ∈ R}.

x0

Figure 1 An R1 vector



Spanning Sets (EV2)

Activity 2.2.2 How many vectors are required to span R2? Sketch a drawing
in the xy plane to support your answer.

Figure 2 The xy plane R2

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many



Spanning Sets (EV2)

Activity 2.2.3 How many vectors are required to span R3?

Figure 3 R3 space

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many



Spanning Sets (EV2)

Fact 2.2.4 At least n vectors are required to span Rn.

Figure 4 Failed attempts to span Rn by < n vectors



Spanning Sets (EV2)

Activity 2.2.5 Consider the question: Does every vector in R3 belong to

span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

?

(a) Determine if

 7
−3
−2

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(b) Determine if

 2
5
7

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(c) An arbitrary vector

 ?
?
?

 belongs to

span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

 provided the equation

x1

 1
−1
0

+ x2

 −2
0
1

+ x3

 −2
−2
2

 =

 ?
?
?


has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(d) We’re guaranteed at least one solution if the RREF of the corresponding
augmented matrix has no contradictions; likewise, we have no solutions
if the RREF corresponds to the contradiction 0 = 1. Given 1 −2 −2 ?

−1 0 −2 ?
0 1 2 ?

 ∼

 1 0 2 ?
0 1 2 ?
0 0 0 ?


we may conclude that the set does not span all of R3 because...



Spanning Sets (EV2)

A. the row [0 1 2 | ? ] prevents a contradiction.
B. the row [0 1 2 | ? ] allows a contradiction.
C. the row [0 0 0 | ? ] prevents a contradiction.
D. the row [0 0 0 | ? ] allows a contradiction.



Spanning Sets (EV2)

Fact 2.2.6 The set {v⃗1, . . . , v⃗m} spans all of Rn exactly when the vector
equation

x1v⃗1 + · · ·xmv⃗m = w⃗

is consistent for every vector w⃗.
Likewise, the set {v⃗1, . . . , v⃗m} fails to span all of Rn exactly when the

vector equation
x1v⃗1 + · · ·xmv⃗m = w⃗

is inconsistent for some vector w⃗.
Note these two possibilities are decided based on whether or not

RREF[v⃗1 . . . v⃗m] has either all pivot rows, or at least one non-pivot row
(a row of zeroes):  1 −2 −2

−1 0 −2
0 1 2

 ∼

 1 0 2
0 1 2
0 0 0

 .



Spanning Sets (EV2)

Activity 2.2.7 Consider the set of vectors S =


2
3
0
−1

 ,


1
−4
3
0

 ,


1
7
−3
−1

 ,


0
3
5
7

 ,


3
13
7
16


 and the question “Does

R4 = spanS?”

(a) Rewrite this question in terms of the solutions to a vector equation.

(b) Answer your new question, and use this to answer the original question.



Spanning Sets (EV2)

Activity 2.2.8 Let v⃗1, v⃗2, v⃗3 ∈ R7 be three Euclidean vectors, and suppose
w⃗ is another vector with w⃗ ∈ span {v⃗1, v⃗2, v⃗3}. What can you conclude about
span {w⃗, v⃗1, v⃗2, v⃗3}?

A. span {w⃗, v⃗1, v⃗2, v⃗3} is larger than span {v⃗1, v⃗2, v⃗3}.

B. span {w⃗, v⃗1, v⃗2, v⃗3} is the same as span {v⃗1, v⃗2, v⃗3}.

C. span {w⃗, v⃗1, v⃗2, v⃗3} is smaller than span {v⃗1, v⃗2, v⃗3}.



Subspaces (EV3)

2.3 Subspaces (EV3)

Learning Outcomes
• Determine if a subset of Rn is a subspace or not.



Subspaces (EV3)

Definition 2.3.1 A subset S of a vector space is called a subspace provided
it is equal to the span of a set of vectors from that vector space. ♢



Subspaces (EV3)

Activity 2.3.2 Consider two non-colinear vectors in R3. If we look at all
linear combinations of those two vectors (that is, their span), we end up with
a planar subspace within R3. Call this plane S.

(a) For any unspecified u⃗, v⃗ ∈ S, is it the case that u⃗+ v⃗ ∈ S?

A. Yes. B. No.

(b) For any unspecified u⃗ ∈ S and c ∈ R, is it the case that u⃗+

 c
c
c

 ∈ S?

A. Yes. B. No.

(c) For any unspecified u⃗ ∈ S and c ∈ R, is it the case that cu⃗ ∈ S?

A. Yes. B. No.



Subspaces (EV3)

Fact 2.3.3 A subset S of a vector space is a subspace provided:

• the subset is closed under addition: for any u⃗, v⃗ ∈ S, the sum u⃗+ v⃗
is also in S.

• the subset is closed under scalar multiplication: for any u⃗ ∈ S
and scalar c ∈ R, the product cu⃗ is also in S.



Subspaces (EV3)

Observation 2.3.4 Note the similarities between a planar subspace spanned
by two non-colinear vectors in R3, and the Euclidean plane R2. While they are
not the same thing (and shouldn’t be referred to interchangably), algebraists
call such similar vector spaces isomorphic; we’ll learn what this means more
carefully in a later chapter.

Figure 5 A planar subset of R3 compared with the plane R2.



Subspaces (EV3)

Activity 2.3.5 Let S =


 x

y
z

 ∣∣∣∣∣∣x+ 2y + z = 0

.

(a) Let’s assume that v⃗ =

 x
y
z

 and w⃗ =

 a
b
c

 are in S. What are we

allowed to assume?

A. x+ 2y + z = 0.
B. a+ 2b+ c = 0.

C. Both of these.
D. Neither of these.

(b) Which equation must be verified to show that v⃗ + w⃗ =

 x+ a
y + b
z + c

 also

belongs to S?

A. (x+ a) + 2(y + b) + (z + c) = 0.
B. x+ a+ 2y + b+ z + c = 0.
C. x+ 2y + z = a+ 2b+ c.

(c) Use the assumptions from (a) to verify the equation from (b).

(d) Is S is a subspace of R3?

A. Yes B. No C. Not enough infor-
mation

(e) Show that kv⃗ =

 kx
ky
kz

 also belongs to S for any k ∈ R by verifying

(kx) + 2(ky) + (kz) = 0 under these assumptions.

(f) Is S is a subspace of R3?

A. Yes B. No C. Not enough infor-
mation



Subspaces (EV3)

Activity 2.3.6 Let S =


 x

y
z

 ∣∣∣∣∣∣x+ 2y + z = 4

.

(a) Which of these statements is valid?

A.

 1
1
1

 ∈ S, and

 2
2
2

 ∈ S, so S is a subspace.

B.

 1
1
1

 ∈ S, and

 2
2
2

 ∈ S, so S is not a subspace.

C.

 1
1
1

 ∈ S, but

 2
2
2

 ̸∈ S, so S is a subspace.

D.

 1
1
1

 ∈ S, but

 2
2
2

 ̸∈ S, so S is not a subspace.

(b) Which of these statements is valid?

(a)

 1
1
1

 ∈ S, and

 0
0
0

 ∈ S, so S is a subspace.

(b)

 1
1
1

 ∈ S, and

 0
0
0

 ∈ S, so S is not a subspace.

(c)

 1
1
1

 ∈ S, but

 0
0
0

 ̸∈ S, so S is a subspace.

(d)

 1
1
1

 ∈ S, but

 0
0
0

 ̸∈ S, so S is not a subspace.



Subspaces (EV3)

Remark 2.3.7 In summary, any one of the following is enough to prove that
a nonempty subset W is not a subspace:

• Find specific values for u⃗, v⃗ ∈ W such that u⃗+ v⃗ ̸∈ W .

• Find specific values for c ∈ R, v⃗ ∈ W such that cv⃗ ̸∈ W .

• Show that 0⃗ ̸∈ W .

If you cannot do any of these, then W can be proven to be a subspace by
doing both of the following:

1. For all v⃗, w⃗ ∈ W (not just specific values), u⃗+ v⃗ ∈ W .

2. For all v⃗ ∈ W and c ∈ R (not just specific values), cv⃗ ∈ W .



Subspaces (EV3)

Activity 2.3.8 Consider these subsets of R3:

R =


 x

y
z

 ∣∣∣∣∣∣ y = z + 1

 S =


 x

y
z

 ∣∣∣∣∣∣ y = |z|

 T =


 x

y
z

 ∣∣∣∣∣∣ z = xy

 .

(a) Show R isn’t a subspace by showing that 0⃗ ̸∈ R.

(b) Show S isn’t a subspace by finding two vectors u⃗, v⃗ ∈ S such that
u⃗+ v⃗ ̸∈ S.

(c) Show T isn’t a subspace by finding a vector v⃗ ∈ T such that 2v⃗ ̸∈ T .



Subspaces (EV3)

Activity 2.3.9 Consider the following two sets of Euclidean vectors:

U =

{[
x
y

]∣∣∣∣ 7x+ 4 y = 0

}
W =

{[
x
y

]∣∣∣∣ 3xy2 = 0

}
Explain why one of these sets is a subspace of R2 and one is not.



Subspaces (EV3)

Activity 2.3.10 Consider the following attempted proof that

U =

{[
x
y

]∣∣∣∣x+ y = xy

}
is closed under scalar multiplication.

Let
[
x
y

]
∈ U , so we know that x + y = xy. We want to show

k

[
x
y

]
=

[
kx
ky

]
∈ U , that is, (kx) + (ky) = (kx)(ky). This is

verified by the following calculation:

(kx) + (ky) = (kx)(ky)

k(x+ y) = k2xy

0[k(x+ y)] = 0[k2xy]

0 = 0

Is this reasoning valid?

A. Yes B. No



Subspaces (EV3)

Remark 2.3.11 Proofs of an equality LEFT = RIGHT should generally be
of one of these forms:

1. Using a chain of equalities:

LEFT = · · ·
= · · ·
= · · ·
= RIGHT

Alternatively:

LEFT = · · · RIGHT = · · ·
= · · · = · · ·
= · · · = · · ·
= SAME = SAME

2. When the assumption THIS = THAT is already known or assumed to
be true :

THIS = THAT
⇒ · · · = · · ·
⇒ · · · = · · ·
⇒ LEFT = RIGHT



Linear Independence (EV4)

2.4 Linear Independence (EV4)

Learning Outcomes
• Determine if a set of Euclidean vectors is linearly dependent or inde-

pendent by solving an appropriate vector equation.



Linear Independence (EV4)

Activity 2.4.1 Consider the two sets

S =


 2

3
1

 ,

 1
1
4

 T =


 2

3
1

 ,

 1
1
4

 ,

 −1
0

−11

 .

Which of the following is true?

A. spanS is bigger than spanT .

B. spanS and spanT are the same size.

C. spanS is smaller than spanT .



Linear Independence (EV4)

Definition 2.4.2 We say that a set of vectors is linearly dependent if one
vector in the set belongs to the span of the others. Otherwise, we say the set
is linearly independent.

Figure 6 A linearly dependent set of three vectors
You can think of linearly dependent sets as containing a redundant vector,

in the sense that you can drop a vector out without reducing the span of the
set. In the above image, all three vectors lay in the same planar subspace, but
only two vectors are needed to span the plane, so the set is linearly dependent.

♢



Linear Independence (EV4)

Activity 2.4.3 Consider the following three vectors in R3:

v⃗1 =

 −2
0
0

 , v⃗2 =

 1
3
0

 , and v⃗3 =

 −2
5
4

 .

(a) Let w⃗ = 3v⃗1 − v⃗2 − 5v⃗3 =

 ?
?
?

. The set {v⃗1, v⃗2, v⃗3, w⃗} is...

A. linearly dependent: at least one vector is a linear combination of
others

B. linearly independent: no vector is a linear combination of others

(b) Find

RREF
[
v⃗1 v⃗2 v⃗3 w⃗

]
= RREF

 −2 1 −2 ?
0 3 5 ?
0 0 4 ?

 = ? .

What does this tell you about solution set for the vector equation x1v⃗1+
x2v⃗2 + x3v⃗3 + x4w⃗ = 0⃗?

A. It is inconsistent.
B. It is consistent with one solution.
C. It is consistent with infinitely many solutions.

(c) Which of these might explain the connection?

A. A pivot column establishes linear independence and creates a con-
tradiction.

B. A non-pivot column both describes a linear combination and re-
veals the number of solutions.

C. A pivot row describes the bound variables and prevents a contra-
diction.

D. A non-pivot row prevents contradictions and makes the vector
equation solvable.



Linear Independence (EV4)

Fact 2.4.4 For any vector space, the set {v⃗1, . . . v⃗n} is linearly dependent if
and only if the vector equation x1v⃗1+ x2v⃗2+ · · ·+ xnv⃗n = 0⃗ is consistent with
infinitely many solutions.

Likewise, the set of vectors {v⃗1, . . . v⃗n} is linearly independent if and only
the vector equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0

has exactly one solution:

 x1
...
xn

 =

 0
...
0

.



Linear Independence (EV4)

Activity 2.4.5 Find

RREF


2 2 3 −1 4 0
3 0 13 10 3 0
0 0 7 7 0 0
−1 3 16 14 1 0


and mark the part of the matrix that demonstrates that

S =




2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
1




is linearly dependent (the part that shows its linear system has infinitely
many solutions).



Linear Independence (EV4)

Observation 2.4.6 Compare the following results:

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly independent if and only if
RREF

[
v⃗1 . . . v⃗n

]
has all pivot columns.

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly dependent if and only if
RREF

[
v⃗1 . . . v⃗n

]
has at least one non-pivot column.

• A set of Rm vectors {v⃗1, . . . v⃗n} spans Rm if and only if
RREF

[
v⃗1 . . . v⃗n

]
has all pivot rows.

• A set of Rm vectors {v⃗1, . . . v⃗n} fails to span Rm if and only if
RREF

[
v⃗1 . . . v⃗n

]
has at least one non-pivot row.



Linear Independence (EV4)

Activity 2.4.7

(a) Write a statement involving the solutions of a vector equation that’s
equivalent to each claim:

(i) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
3


 is linearly inde-

pendent.”

(ii) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
3


 is linearly depen-

dent.”

(b) Explain how to determine which of these statements is true.



Linear Independence (EV4)

Activity 2.4.8 What is the largest number of R4 vectors that can form a
linearly independent set?

A. 3

B. 4

C. 5

D. You can have infinitely many
vectors and still be linearly in-
dependent.



Linear Independence (EV4)

Activity 2.4.9 Is is possible for the set of Euclidean vectors {v⃗1, v⃗2, . . . , v⃗n, 0⃗}
to be linearly independent?

A. Yes B. No



Identifying a Basis (EV5)

2.5 Identifying a Basis (EV5)

Learning Outcomes
• Explain why a set of Euclidean vectors is or is not a basis of Rn.



Identifying a Basis (EV5)

Activity 2.5.1 Consider the set of vectors

S =




3
−2
−1
0

 ,


2
4
1
1

 ,


0

−16
−5
−3

 ,


1
2
3
0

 ,


3
3
0
1


 .

(a) Express the vector


5
2
0
1

 as a linear combination of the vectors in S,

i.e. find scalars such that
5
2
0
1

 = ?


3
−2
−1
0

+ ?


2
4
1
1

+ ?


0

−16
−5
−3

+ ?


1
2
3
0

+ ?


3
3
0
1

 .

(b) Find a different way to express the vector


5
2
0
1

 as a linear combination

of the vectors in S.

(c) Consider another vector


8
6
7
5

. Without computing the RREF of an-

other matrix, how many ways can this vector be written as a linear
combination of the vectors in S?

A. Zero.
B. One.
C. Infinitely-many.
D. Computing a new matrix RREF is necessary.



Identifying a Basis (EV5)

Activity 2.5.2 Let’s review some of the terminology we’ve been dealing
with...

(a) If every vector in a vector space can be constructed as one or more
linear combination of vectors in a set S, we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(b) If the zero vector 0⃗ can be constructed as a unique linear combination
of vectors in a set S (the combination multiplying every vector by the
scalar value 0), we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(c) If every vector of a vector space can either be constructed as a unique
linear combination of vectors in a set S, or not at all, we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.



Identifying a Basis (EV5)

Definition 2.5.3 A basis of a vector space V is a set of vectors S contained
in V for which

1. Every vector in the vector space can be expressed as a linear combina-
tion of the vectors in S.

2. For each vector v⃗ in the vector space, there is only one way to write it
as a linear combination of the vectors in S.

These two properties may be expressed more succintly as the statement ”Ev-
ery vector in V can be expressed uniquely as a linear combination of the
vectors in S”. ♢



Identifying a Basis (EV5)

Observation 2.5.4 In terms of a vector equation, a set S = {v⃗1, . . . , v⃗n} is
a basis of a vector space if the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

has a unique solution for every vector w⃗ in the vector space.
Put another way, a basis may be thought of as a minimal set of “building

blocks” that can be used to construct any other vector of the vector space.



Identifying a Basis (EV5)

Activity 2.5.5 Let S be a basis (Definition 2.5.3) for a vector space. Then...

A. the set S must both span the vector space and be linearly independent.

B. the set S must span the vector space but could be linearly dependent.

C. the set S must be linearly independent but could fail to span the vector
space.

D. the set S could fail to span the vector space and could be linearly
dependent.



Identifying a Basis (EV5)

Activity 2.5.6 The vectors

î = (1, 0, 0) =

 1
0
0

 ĵ = (0, 1, 0) =

 0
1
0

 k̂ = (0, 0, 1) =

 0
0
1


form a basis {̂i, ĵ, k̂} used frequently in multivariable calculus.

Find the unique linear combination of these vectors

? î+ ? ĵ + ? k̂

that equals the vector

(3,−2, 4) =

 3
−2
4


in xyz space.



Identifying a Basis (EV5)

Definition 2.5.7 The standard basis of Rn is the set {e⃗1, . . . , e⃗n} where

e⃗1 =



1
0
0
...
0
0

 e⃗2 =



0
1
0
...
0
0

 · · · e⃗n =



0
0
0
...
0
1

 .

In particular, the standard basis for R3 is {e⃗1, e⃗2, e⃗3} = {̂i, ĵ, k̂}. ♢



Identifying a Basis (EV5)

Activity 2.5.8 Take the RREF of an appropriate matrix to determine if
each of the following sets is a basis for R4.

(a) 


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to

span R4.
D. Not a basis, because not only does it fail to span R4, it’s also

linearly dependent.

(b) 


2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to

span R4.
D. Not a basis, because not only does it fail to span R4, it’s also

linearly dependent.

(c) 


2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
2




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
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C. Not a basis, because while it is linearly independent, it fails to
span R4.

D. Not a basis, because not only does it fail to span R4, it’s also
linearly dependent.

(d) 


2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to

span R4.
D. Not a basis, because not only does it fail to span R4, it’s also

linearly dependent.

(e) 


5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to

span R4.
D. Not a basis, because not only does it fail to span R4, it’s also

linearly dependent.
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Activity 2.5.9 If {v⃗1, v⃗2, v⃗3, v⃗4} is a basis for R4, that means RREF[v⃗1 v⃗2 v⃗3 v⃗4]
has a pivot in every row (because it spans), and has a pivot in every column
(because it’s linearly independent).

What is RREF[v⃗1 v⃗2 v⃗3 v⃗4]?

RREF[v⃗1 v⃗2 v⃗3 v⃗4] =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


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Fact 2.5.10 The set {v⃗1, . . . , v⃗m} is a basis for Rn if and only if m = n and

RREF[v⃗1 . . . v⃗n] =


1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

.

That is, a basis for Rn must have exactly n vectors and its square matrix
must row-reduce to the so-called identity matrix containing all zeros except
for a downward diagonal of ones. (We will learn where the identity matrix
gets its name in a later module.)
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2.6 Subspace Basis and Dimension (EV6)

Learning Outcomes
• Compute a basis for the subspace spanned by a given set of Euclidean

vectors, and determine the dimension of the subspace.



Subspace Basis and Dimension (EV6)

Observation 2.6.1 Recall from section Section 2.3 that a subspace of a
vector space is the result of spanning a set of vectors from that vector space.

Recall also that a linearly dependent set contains “redundant” vectors.
For example, only two of the three vectors in Figure 14 are needed to span
the planar subspace.
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Activity 2.6.2 Consider the subspace of R4 given by W =

span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


.

(a) Mark the column of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s

spanning set is linearly dependent.

(b) What would be the result of removing the vector that gave us this
column?

A. The set still spans W , and remains linearly dependent.
B. The set still spans W , but is now also linearly independent.
C. The set no longer spans W , and remains linearly dependent.
D. The set no longer spans W , but is now linearly independent.
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Definition 2.6.3 Let W be a subspace of a vector space. A basis for W is
a linearly independent set of vectors that spans W (but not necessarily the
entire vector space). ♢
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Observation 2.6.4 So given a set S = {v⃗1, . . . , v⃗m}, to compute a basis for
the subspace spanS, simply remove the vectors corresponding to the non-
pivot columns of RREF[v⃗1 . . . v⃗m]. For example, since

RREF

 1 2 0 1
2 4 −2 2
3 6 −2 1

 =

 1 2 0 1
0 0 1 1
0 0 0 0



the subspace W = span


 1

2
3

 ,

 2
4
6

 ,

 0
−2
−2

 ,

 1
2
1

 has
 1

2
3

 ,

 0
−2
−2

 as a basis.
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Activity 2.6.5

(a) Find a basis for spanS where

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 .

(b) Find a basis for spanT where

T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 .
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Observation 2.6.6 Even though we found different bases for them, spanS
and spanT are exactly the same subspace of R4, since

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 = T .

Thus the basis for a subspace is not unique in general.
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Fact 2.6.7 Any non-trivial real vector space has infinitely-many different
bases, but all the bases for a given vector space are exactly the same size.

For example,

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


are all valid bases for R3, and they all contain three vectors.
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Definition 2.6.8 The dimension of a vector space or subspace is equal to
the size of any basis for the vector space.

As you’d expect, Rn has dimension n. For example, R3 has dimension 3
because any basis for R3 such as

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


contains exactly three vectors. ♢
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Activity 2.6.9 Consider the following subspace W of R4:

W = span




1
0
0
−1

 ,


−2
0
0
2

 ,


−3
1
−5
5

 ,


12
−3
15
−18


 .

(a) Explain and demonstrate how to find a basis of W .

(b) Explain and demonstrate how to find the dimension of W .
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Activity 2.6.10 The dimension of a subspace may be found by doing what
with an appropriate RREF matrix?

A. Count the rows.

B. Count the non-pivot columns.

C. Count the pivots.

D. Add the number of pivot rows and pivot columns.
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2.7 Homogeneous Linear Systems (EV7)

Learning Outcomes
• Find a basis for the solution set of a homogeneous system of equations.
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Definition 2.7.1 A homogeneous system of linear equations is one of the
form:

a11x1+ a12x2+ . . .+ a1nxn =0

a21x1+ a22x2+ . . .+ a2nxn =0
... ... ... ...

am1x1+ am2x2+ . . .+ amnxn =0

This system is equivalent to the vector equation:

x1v⃗1 + · · ·+ xnv⃗n = 0⃗

and the augmented matrix:
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
... ... . . . ... ...

am1 am2 · · · amn 0


♢
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Activity 2.7.2 Consider the homogeneous vector equation x1v⃗1+· · ·+xnv⃗n =
0⃗.

(a) Note that if

 a1
...
an

 and

 b1
...
bn

 are both solutions, we know that

a1v⃗1 + · · ·+ anv⃗n = 0⃗ and b1v⃗1 + · · ·+ bnv⃗n = 0⃗.

Therefore by adding these equations,

(a1 + b1)v⃗1 + · · ·+ (an + bn)v⃗n = 0⃗

shows that

 a1 + b1
...

an + bn

 is also a solution. Thus the solution set of a

homogeneous system is...

A. Closed under addition.
B. Not closed under addition.
C. Linearly dependent.
D. Linearly independent.

(b) Similarly, if c ∈ R,

 ca1
...

can

 is a solution. Thus the solution set of

a homogeneous system is also closed under scalar multiplication, and
therefore...

A. A basis for Rn.
B. A subspace of Rn.
C. All of Rn.
D. The empty set.
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Activity 2.7.3 Consider the homogeneous system of equations

x1+2x2 + x4 =0

2x1+4x2−x3− 2x4 =0

3x1+6x2−x3− x4 =0

(a) Find its solution set (a subspace of R4).

(b) Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .

(c) Rewrite this solution space in the form

span




?
?
?
?

 ,


?
?
?
?


 .

(d) Which of these choices best describes the set of two vectors


?
?
?
?

 ,


?
?
?
?


 used in this span?

A. The set is linearly dependent.
B. The set is linearly independent.
C. The set spans all of R4.
D. The set fails to span the solution space.
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Fact 2.7.4 The coefficients of the free variables in the solution space of a
linear system always yield linearly independent vectors that span the solution
space.

Thus ifa


−2
1
0
0

+ b


−1
0
−4
1


∣∣∣∣∣∣∣∣ a, b ∈ R

 = span




−2
1
0
0

 ,


−1
0
−4
1




is the solution space for a homogeneous system, then


−2
1
0
0

 ,


−1
0
−4
1




is a basis for the solution space.
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Activity 2.7.5 Consider the homogeneous system of equations

2x1+4x2+2x3− 4x4 =0

−2x1− 4x2+ x3+ x4 =0

3x1+6x2− x3− 4x4 =0

Find a basis for its solution space.
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Activity 2.7.6 Consider the homogeneous vector equation

x1

 2
−2
3

+ x2

 4
−4
6

+ x3

 2
1
−1

+ x4

 −4
1
−4

 =

 0
0
0


Find a basis for its solution space.
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Activity 2.7.7 Consider the homogeneous system of equations

x1− 3x2+2x3 =0

2x1+6x2+4x3 =0

x1+6x2− 4x3 =0

(a) Find its solution space.

(b) Which of these is the best choice of basis for this solution space?

A {} B {⃗0} C The basis does
not exist
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Activity 2.7.8 To create a computer-animated film, an animator first models
a scene as a subset of R3. Then to transform this three-dimensional visual
data for display on a two-dimensional movie screen or television set, the
computer could apply a linear tranformation that maps visual information at
the point (x, y, z) ∈ R3 onto the pixel located at (x+ y, y − z) ∈ R2.

(a) What homoegeneous linear system describes the positions (x, y, z)
within the original scene that would be aligned with the pixel (0, 0)
on the screen?

(b) Solve this system to describe these locations.



Chapter 3

Algebraic Properties of Lin-
ear Maps (AT)

Learning Outcomes
How can we understand linear maps algebraically?
By the end of this chapter, you should be able to...

1. Determine if a map between Euclidean vector spaces is linear or not.

2. Translate back and forth between a linear transformation of Euclidean
spaces and its standard matrix, and perform related computations.

3. Compute a basis for the kernel and a basis for the image of a linear
map, and verify that the rank-nullity theorem holds for a given linear
map.

4. Determine if a given linear map is injective and/or surjective.

5. Explain why a given set with defined addition and scalar multiplication
does satisfy a given vector space property, but nonetheless isn’t a vector
space.

6. Answer questions about vector spaces of polynomials or matrices.

132
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3.1 Linear Transformations (AT1)

Learning Outcomes
• Determine if a map between Euclidean vector spaces is linear or not.



Linear Transformations (AT1)

Definition 3.1.1 A linear transformation (also called a linear map) is a
map between vector spaces that preserves the vector space operations. More
precisely, if V and W are vector spaces, a map T : V → W is called a linear
transformation if

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V , and

2. T (cv⃗) = cT (v⃗) for any c ∈ R, and v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied
before or after the transformation without affecting the result. ♢



Linear Transformations (AT1)

Definition 3.1.2 Given a linear transformation T : V → W , V is called the
domain of T and W is called the co-domain of T .

v⃗

domain R3

Linear transformation T : R3 → R2

T (v⃗)

co-domain R2

Figure 7 A linear transformation with a domain of R3 and a co-domain of
R2

♢



Linear Transformations (AT1)

Observation 3.1.3 One example of a linear transformation R3 → R2 is
the projection of three-dimesional data onto a two-dimensional screen, as is
necessary for computer animiation in film or video games.

Figure 8 A projection of a 3D teapot onto a 2D screen
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Activity 3.1.4 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x− z
3y

]
.

(a) Compute the result of adding vectors before a T transformation:

T

 x
y
z

+

 u
v
w

 = T

 x+ u
y + v
z + w


A.

[
x− u+ z − w

3y − 3v

]

B.
[
x+ u− z − w

3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(b) Compute the result of adding vectors after a T transformation:

T

 x
y
z

+ T

 u
v
w

 =

[
x− z
3y

]
+

[
u− w
3v

]

A.
[
x− u+ z − w

3y − 3v

]

B.
[
x+ u− z − w

3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(c) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.
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(d) Compute the result of scalar multiplcation before a T transformation:

T

c

 x
y
z

 = T

 cx
cy
cz


A.

[
cx− cz
3cy

]

B.
[
cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


(e) Compute the result of scalar multiplcation after a T transformation:

cT

 x
y
z

 = c

[
x− z
3y

]

A.
[
cx− cz
3cy

]

B.
[
cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


(f) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.



Linear Transformations (AT1)

Activity 3.1.5 Let S : R2 → R4 be given by

S

([
x
y

])
=


x+ y
x2

y + 3
y − 2x


(a) Compute

S

([
0
1

]
+

[
2
3

])
= S

([
2
4

])

A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(b) Compute

S

([
0
1

])
+ S

([
2
3

])
=


0 + 1
02

1 + 3
1− 20

+


2 + 3
22

3 + 3
3− 22


A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(c) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.



Linear Transformations (AT1)

Activity 3.1.6 Fill in the ? s, assuming T : R3 → R3 is linear:

T

 0
0
0

 = T

 ?

 1
1
1

 = ?T

 1
1
1

 =

 ?
?
?





Linear Transformations (AT1)

Remark 3.1.7 In summary, any one of the following is enough to prove that
T : V → W is not a linear transformation:

• Find specific values for v⃗, w⃗ ∈ V such that T (v⃗ + w⃗) ̸= T (v⃗) + T (w⃗).

• Find specific values for v⃗ ∈ V and c ∈ R such that T (cv⃗) ̸= cT (v⃗).

• Show T (⃗0) ̸= 0⃗.

If you cannot do any of these, then T can be proven to be a linear trans-
formation by doing both of the following:

1. For all v⃗, w⃗ ∈ V (not just specific values), T (v⃗ + w⃗) = T (v⃗) + T (w⃗).

2. For all v⃗ ∈ V and c ∈ R (not just specific values), T (cv⃗) = cT (v⃗).

(Note the similarities between this process and showing that a subset of
a vector space is or is not a subspace: Remark 2.3.7.)



Linear Transformations (AT1)

Activity 3.1.8

(a) Consider the following maps of Euclidean vectors P : R3 → R3 and
Q : R3 → R3 defined by

P

 x
y
z

 =

 −2x− 3 y − 3 z
3x+ 4 y + 4 z
3x+ 4 y + 5 z

 and Q

 x
y
z

 =

 x− 4 y + 9 z
y − 2 z

8 y2 − 3xz

 .

Which do you suspect?

A. P is linear, but Q is not.
B. Q is linear, but P is not.

C. Both maps are linear.
D. Neither map is linear.

(b) Consider the following map of Euclidean vectors S : R2 → R2

S

([
x
y

])
=

[
x+ 2 y
9xy

]
.

Prove that S is not a linear transformation.

(c) Consider the following map of Euclidean vectors T : R2 → R2

T

([
x
y

])
=

[
8x− 6 y
6x− 4 y

]
.

Prove that T is a linear transformation.



Standard Matrices (AT2)

3.2 Standard Matrices (AT2)

Learning Outcomes
• Translate back and forth between a linear transformation of Euclidean

spaces and its standard matrix, and perform related computations.



Standard Matrices (AT2)

Remark 3.2.1 Recall that a linear map T : V → W satisfies

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V .

2. T (cv⃗) = cT (v⃗) for any c ∈ R, v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied
before or after the transformation without affecting the result.



Standard Matrices (AT2)

Activity 3.2.2 Suppose T : R3 → R2 is a linear map, and you know

T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What is T

 3
0
0

?

A.
[
6
3

]

B.
[
−9
6

]
C.

[
−4
−2

]

D.
[

6
−4

]



Standard Matrices (AT2)

Activity 3.2.3 Suppose T : R3 → R2 is a linear map, and you know

T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What is T

 1
0
1

?

A.
[
2
1

]

B.
[

3
−1

]
C.

[
−1
3

]

D.
[

5
−8

]



Standard Matrices (AT2)

Activity 3.2.4 Suppose T : R3 → R2 is a linear map, and you know

T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What is T

 −2
0
−3

?

A.
[
2
1

]

B.
[

3
−1

]
C.

[
−1
3

]

D.
[

5
−8

]



Standard Matrices (AT2)

Activity 3.2.5 Suppose T : R3 → R2 is a linear map, and you know

T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What piece of informa-

tion would help you compute T

 0
4
−1

?

A. The value of T

 0
−4
0

.

B. The value of T

 0
1
0

.

C. The value of T

 1
1
1

.

D. Any of the above.



Standard Matrices (AT2)

Fact 3.2.6 Consider any basis {⃗b1, . . . , b⃗n} for V . Since every vector v⃗ can
be written as a linear combination of basis vectors, v⃗ = x1⃗b1 + · · ·+ xn⃗bn, we
may compute T (v⃗) as follows:

T (v⃗) = T (x1⃗b1 + · · ·+ xn⃗bn) = x1T (⃗b1) + · · ·+ xnT (⃗bn).

Therefore any linear transformation T : V → W can be defined by just
describing the values of T (⃗bi).

Put another way, the images of the basis vectors completely determine
the transformation T .



Standard Matrices (AT2)

Definition 3.2.7 Since a linear transformation T : Rn → Rm is determined
by its action on the standard basis {e⃗1, . . . , e⃗n}, it is convenient to store this
information in an m× n matrix, called the standard matrix of T , given by
[T (e⃗1) · · · T (e⃗n)].

For example, let T : R3 → R2 be the linear map determined by the
following values for T applied to the standard basis of R3.

T (e⃗1) = T
([

1
0
0

])
=

[
3
2

]
T (e⃗2) = T

([
0
1
0

])
=

[ −1
4

]
T (e⃗3) = T

([
0
0
1

])
=

[
5
0

]
Then the standard matrix corresponding to T is

[
T (e⃗1) T (e⃗2) T (e⃗3)

]
=

[
3 −1 5
2 4 0

]
.

♢



Standard Matrices (AT2)

Activity 3.2.8 Let T : R4 → R3 be the linear transformation given by

T (e⃗1) =

 0
3
−2

 T (e⃗2) =

 −3
0
1

 T (e⃗3) =

 4
−2
1

 T (e⃗4) =

 2
0
0


Write the standard matrix [T (e⃗1) · · · T (e⃗n)] for T .



Standard Matrices (AT2)

Activity 3.2.9 Let T : R3 → R2 be the linear transformation given by

T

 x
y
z

 =

[
x+ 3z

2x− y − 4z

]

(a) Compute T (e⃗1), T (e⃗2), and T (e⃗3).

(b) Find the standard matrix for T .



Standard Matrices (AT2)

Fact 3.2.10 Because every linear map T : Rm → Rn has a linear combination
of the variables in each component, and thus T (e⃗i) yields exactly the coeffi-
cients of xi, the standard matrix for T is simply an array of the coefficients
of the xi:

T




x
y
z
w


 =

[
ax+ by + cz + dw
ex+ fy + gz + hw

]
A =

[
a b c d
e f g h

]

Since the formula for a linear transformation T and its standard matrix
A may both be used to compute the transformation of a vector x⃗, we will often
write T (x⃗) and Ax⃗ interchangably:

T




x1
x2
x3
x4


 =

[
ax1 + by2 + cx3 + dx4
ex1 + fy2 + gx3 + hx4

]
= A


x1
x2
x3
x4

 =

[
a b c d
e f g h

]
x1
x2
x3
x4





Standard Matrices (AT2)

Activity 3.2.11 Let T : R3 → R3 be the linear transformation given by the
standard matrix  3 −2 −1

4 5 2
0 −2 1

 .

(a) Compute T

 1
2
3

.

(b) Compute T

 x
y
z

.



Standard Matrices (AT2)

Activity 3.2.12 Compute the following linear transformations of vectors
given their standard matrices.

(a)

T1

([
1
2

])
for the standard matrix A1 =


4 3
0 −1
1 1
3 0


(b)

T2




1
1
0
−3


 for the standard matrix A2 =

[
4 3 0 −1
1 1 3 0

]

(c)

T3

 0
−2
0

 for the standard matrix A3 =


4 3 0
0 −1 3
5 1 1
3 0 0





Image and Kernel (AT3)

3.3 Image and Kernel (AT3)

Learning Outcomes
• Compute a basis for the kernel and a basis for the image of a linear

map, and verify that the rank-nullity theorem holds for a given linear
map.



Image and Kernel (AT3)

Activity 3.3.1 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R2 describes the set of all vectors that transform
into 0⃗?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}



Image and Kernel (AT3)

Definition 3.3.2 Let T : V → W be a linear transformation, and let z⃗ be the
additive identity (the “zero vector”) of W . The kernel of T is an important
subspace of V defined by

kerT =
{
v⃗ ∈ V

∣∣ T (v⃗) = z⃗
}

kerT

0⃗

Figure 9 The kernel of a linear transformation
♢



Image and Kernel (AT3)

Activity 3.3.3 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R3 describes kerT , the set of all vectors that
transform into 0⃗?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

a
0

 ∣∣∣∣∣∣ a ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R





Image and Kernel (AT3)

Activity 3.3.4 Let T : R3 → R2 be the linear transformation given by the
standard matrix

T

 x
y
z

 =

[
3x+ 4y − z
x+ 2y + z

]

(a) Set T

 x
y
z

 =

[
0
0

]
to find a linear system of equations whose

solution set is the kernel.

(b) Use RREF(A) to solve this homogeneous system of equations and find
a basis for the kernel of T .



Image and Kernel (AT3)

Activity 3.3.5 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 2x+ 4y + 2z − 4w
−2x− 4y + z + w
3x+ 6y − z − 4w

 .

Find a basis for the kernel of T .



Image and Kernel (AT3)

Activity 3.3.6 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R3 describes the set of all vectors that are the
result of using T to transform R2 vectors?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

b
0

 ∣∣∣∣∣∣ a, b ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R





Image and Kernel (AT3)

Definition 3.3.7 Let T : V → W be a linear transformation. The image of
T is an important subspace of W defined by

ImT =
{
w⃗ ∈ W

∣∣ there is some v⃗ ∈ V with T (v⃗) = w⃗
}

In the examples below, the left example’s image is all of R2, but the right
example’s image is a planar subspace of R3.

Figure 10 The image of a linear transformation
♢



Image and Kernel (AT3)

Activity 3.3.8 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R2 describes ImT , the set of all vectors that are
the result of using T to transform R3 vectors?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}



Image and Kernel (AT3)

Activity 3.3.9 Let T : R4 → R3 be the linear transformation given by the
standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 =
[
T (e⃗1) T (e⃗2) T (e⃗3) T (e⃗4)

]
.

Consider the question: Which vectors w⃗ in R3 belong to ImT?

(a) Determine if

 12
3
3

 belongs to ImT .

(b) Determine if

 1
1
1

 belongs to ImT .

(c) An arbitrary vector

 ?
?
?

 belongs to ImT provided the equation

x1T (e⃗1) + x2T (e⃗2) + x3T (e⃗3) + x4T (e⃗4) = w⃗

has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(d) Based on this, how do ImT and span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} relate
to each other?

A. The set ImT contains span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} but is not
equal to it.

B. The set span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} contains ImT but is not
equal to it.

C. The set ImT and span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} are equal to
each other.

D. There is no relation between these two sets.



Image and Kernel (AT3)

Observation 3.3.10 Let T : R4 → R3 be the linear transformation given by
the standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .

Since the set


 3

−1
2

 ,

 4
1
1

 ,

 7
0
3

 ,

 1
2
−1

 spans ImT , we can ob-

tain a basis for ImT by finding RREFA =

 1 0 1 −1
0 1 1 1
0 0 0 0

 and only using

the vectors corresponding to pivot columns:
 3

−1
2

 ,

 4
1
1





Image and Kernel (AT3)

Fact 3.3.11 Let T : Rn → Rm be a linear transformation with standard
matrix A.

• The kernel of T is the solution set of the homogeneous system given by
the augmented matrix

[
A 0⃗

]
. Use the coefficients of its free variables

to get a basis for the kernel.

• The image of T is the span of the columns of A. Remove the vectors
creating non-pivot columns in RREFA to get a basis for the image.



Image and Kernel (AT3)

Activity 3.3.12 Let T : R3 → R4 be the linear transformation given by the
standard matrix

A =


1 −3 2
2 −6 0
0 0 1
−1 3 1

 .

Find a basis for the kernel and a basis for the image of T .



Image and Kernel (AT3)

Activity 3.3.13 Let T : Rn → Rm be a linear transformation with standard
matrix A. Which of the following is equal to the dimension of the kernel of
T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows



Image and Kernel (AT3)

Activity 3.3.14 Let T : Rn → Rm be a linear transformation with standard
matrix A. Which of the following is equal to the dimension of the image of
T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows



Image and Kernel (AT3)

Observation 3.3.15 Combining these with the observation that the number
of columns is the dimension of the domain of T , we have the rank-nullity
theorem:

The dimension of the domain of T equals dim(kerT )+dim(ImT ).

The dimension of the image is called the rank of T (or A) and the dimension
of the kernel is called the nullity.



Image and Kernel (AT3)

Activity 3.3.16 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 x− y + 5 z + 3w
−x− 4 z − 2w
y − 2 z − w

 .

(a) Explain and demonstrate how to find the image of T and a basis for
that image.

(b) Explain and demonstrate how to find the kernel of T and a basis for
that kernel.

(c) Explain and demonstrate how to find the rank and nullity of T , and
why the rank-nullity theorem holds for T .



Injective and Surjective Linear Maps (AT4)

3.4 Injective and Surjective Linear Maps (AT4)

Learning Outcomes
• Determine if a given linear map is injective and/or surjective.



Injective and Surjective Linear Maps (AT4)

Definition 3.4.1 Let T : V → W be a linear transformation. T is called
injective or one-to-one if T does not map two distinct vectors to the same
place. More precisely, T is injective if T (v⃗) ̸= T (w⃗) whenever v⃗ ̸= w⃗.

v⃗

w⃗

T (v⃗)
T (w⃗)

injective

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective

Figure 11 An injective transformation and a non-injective transformation
♢



Injective and Surjective Linear Maps (AT4)

Activity 3.4.2 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) ̸= T (w⃗) whenever v⃗ ̸= w⃗.

C. No, because T

 0
0
1

 ̸= T

 0
0
2

.

D. No, because T

 0
0
1

 = T

 0
0
2

.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.3 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) ̸= T (w⃗) whenever v⃗ ̸= w⃗.

C. No, because T

([
1
2

])
̸= T

([
3
4

])
.

D. No, because T

([
1
2

])
= T

([
3
4

])
.



Injective and Surjective Linear Maps (AT4)

Definition 3.4.4 Let T : V → W be a linear transformation. T is called
surjective or onto if every element of W is mapped to by an element of V .
More precisely, for every w⃗ ∈ W , there is some v⃗ ∈ V with T (v⃗) = w⃗.

surjective not surjective

Figure 12 A surjective transformation and a non-surjective transformation
♢



Injective and Surjective Linear Maps (AT4)

Activity 3.4.5 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T surjective?

A. Yes, because for every w⃗ =

 x
y
z

 ∈ R3, there exists v⃗ =

[
x
y

]
∈ R2

such that T (v⃗) = w⃗.

B. No, because T

([
x
y

])
can never equal

 1
1
1

.

C. No, because T

([
x
y

])
can never equal

 0
0
0

.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.6 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T surjective?

A. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 x
y
42

 ∈ R3

such that T (v⃗) = w⃗.

B. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 0
0
z

 ∈ R3

such that T (v⃗) = w⃗.

C. No, because T

 x
y
z

 can never equal
[

3
−2

]
.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.7 Let T : V → W be a linear transformation where kerT
contains multiple vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective



Injective and Surjective Linear Maps (AT4)

Fact 3.4.8 A linear transformation T is injective if and only if kerT = {⃗0}.
Put another way, an injective linear transformation may be recognized by its
trivial kernel.

v⃗

w⃗

0⃗ T (v⃗)
T (w⃗)

T (⃗0) = 0⃗

Figure 13 A linear transformation with trivial kernel, which is therefore
injective



Injective and Surjective Linear Maps (AT4)

Activity 3.4.9 Let T : V → R3 be a linear transformation where ImT may
be spanned by only two vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective



Injective and Surjective Linear Maps (AT4)

Fact 3.4.10 A linear transformation T : V → W is surjective if and only
if ImT = W . Put another way, a surjective linear transformation may be
recognized by its identical codomain and image.

surjective, ImT = R2 not surjective, ImT ̸= R3

Figure 14 A linear transformation with identical codomain and image, which
is therefore surjective; and a linear transformation with an image smaller than
the codomain R3, which is therefore not surjective.



Injective and Surjective Linear Maps (AT4)

Definition 3.4.11 A transformation that is both injective and surjective is
said to be bijective. ♢



Injective and Surjective Linear Maps (AT4)

Activity 3.4.12 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. The kernel of T is trivial, i.e. kerT = {⃗0}.

2. The image of T equals its codomain, i.e. ImT = Rm.

3. For every w⃗ ∈ Rm, the set {v⃗ ∈ Rn|T (v⃗) = w⃗} contains exactly one
vector.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.13 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. The columns of A span Rm.

2. The columns of A form a basis for Rm.

3. The columns of A are linearly independent.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.14 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. RREF(A) is the identity matrix.

2. Every column of RREF(A) has a pivot.

3. Every row of RREF(A) has a pivot.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.15 Let T : Rn → Rm be a linear map with standard matrix A.
Determine whether each of the following statements means T is (A) injective,
(B) surjective, or (C) bijective (both).

1. The system of linear equations given by the augmented matrix
[
A b⃗

]
has a solution for all b⃗ ∈ Rm.

2. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly one solution for all b⃗ ∈ Rm.

3. The system of linear equations given by the augmented matrix
[
A 0⃗

]
has exactly one solution.



Injective and Surjective Linear Maps (AT4)

Observation 3.4.16 The easiest way to determine if the linear map with
standard matrix A is injective is to see if RREF(A) has a pivot in each
column.

The easiest way to determine if the linear map with standard matrix A is
surjective is to see if RREF(A) has a pivot in each row.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.17 What can you conclude about the linear map T : R2 → R3

with standard matrix

 a b
c d
e f

?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.18 What can you conclude about the linear map T : R3 → R2

with standard matrix
[
a b c
d e f

]
?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.



Injective and Surjective Linear Maps (AT4)

Fact 3.4.19 The following are true for any linear map T : V → W :

• If dim(V ) > dim(W ), then T is not injective.

• If dim(V ) < dim(W ), then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing
vectors into each other, and a linear transformation cannot increase dimension
from its domain to its image.

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective, 3 > 2 not surjective, 2 < 3

Figure 15 A linear transformation whose domain has a larger dimension
than its codomain, and is therefore not injective; and a linear transformation
whose domain has a smaller dimension than its codomain, and is therefore
not surjective.

But dimension arguments cannot be used to prove a map is injective or
surjective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.20 Suppose T : Rn → R4 with standard matrix A =
a11 a12 · · · a1n
a21 a22 · · · a2n
a31 a32 · · · a3n
a41 a42 · · · a4n

 is bijective.

(a) How many pivot rows must RREFA have?

(b) How many pivot columns must RREFA have?

(c) What is RREFA?



Injective and Surjective Linear Maps (AT4)

Activity 3.4.21 Let T : Rn → Rn be a bijective linear map with standard
matrix A. Label each of the following as true or false.

A. RREF(A) is the identity matrix.

B. The columns of A form a basis for Rn

C. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly one solution for each b⃗ ∈ Rn.



Injective and Surjective Linear Maps (AT4)

Observation 3.4.22 The easiest way to show that the linear map with
standard matrix A is bijective is to show that RREF(A) is the identity matrix.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.23 Let T : R3 → R3 be given by the standard matrix

A =

 2 1 −1
4 1 1
6 2 1

 .

Which of the following must be true?

A. T is neither injective nor surjec-
tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.24 Let T : R3 → R3 be given by

T

 x
y
z

 =

 2x+ y − z
4x+ y + z
6x+ 2y

 .

Which of the following must be true?

A. T is neither injective nor surjec-
tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.25 Let T : R2 → R3 be given by

T

([
x
y

])
=

 2x+ 3y
x− y
x+ 3y

 .

Which of the following must be true?

A. T is neither injective nor surjec-
tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Injective and Surjective Linear Maps (AT4)

Activity 3.4.26 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
2x+ y − z
4x+ y + z

]
.

Which of the following must be true?

A. T is neither injective nor surjec-
tive

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.



Vector Spaces (AT5)

3.5 Vector Spaces (AT5)

Learning Outcomes
• Explain why a given set with defined addition and scalar multiplication

does satisfy a given vector space property, but nonetheless isn’t a vector
space.



Vector Spaces (AT5)

Observation 3.5.1 Consider the following applications of properties of the
real numbers R:

1. 1 + (2 + 3) = (1 + 2) + 3.

2. 7 + 4 = 4 + 7.

3. There exists some ? where 5 + ? = 5.

4. There exists some ? where 9 + ? = 0.

5. 1
2(1 + 7) is the only number that is equally distant from 1 and 7.



Vector Spaces (AT5)

Activity 3.5.2 Which of the following properites of R2 Euclidean vectors is
NOT true?

A.
[
x1
x2

]
+

([
y1
y2

]
+

[
z1
z2

])
=

([
x1
x2

]
+

[
y1
y2

])
+

[
z1
z2

]
.

B.
[
x1
x2

]
+

[
y1
y2

]
=

[
y1
y2

]
+

[
x1
x2

]
.

C. There exists some
[

?
?

]
where

[
x1
x2

]
+

[
?
?

]
=

[
x1
x2

]
.

D. There exists some
[

?
?

]
where

[
x1
x2

]
+

[
?
?

]
=

[
0
0

]
.

E. 1

2

([
x1
x2

]
+

[
y1
y2

])
is the only vector whose endpoint is equally dis-

tant from the endpoints of
[
x1
x2

]
and

[
y1
y2

]
.



Vector Spaces (AT5)

Observation 3.5.3 Consider the following applications of properites of the
real numbers R:

1. 3(2(7)) = (3 · 2)(7).

2. 1(19) = 19.

3. There exists some ? such that ? · 4 = 9.

4. 3 · (2 + 8) = 3 · 2 + 3 · 8.

5. (2 + 7) · 4 = 2 · 4 + 7 · 4.



Vector Spaces (AT5)

Activity 3.5.4 Which of the following properites of R2 Euclidean vectors is
NOT true?

A. a

(
b

[
x1
x2

])
= ab

[
x1
x2

]
.

B. 1

[
x1
x2

]
=

[
x1
x2

]
.

C. There exists some ? such that ?

[
x1
x2

]
=

[
y1
y2

]
.

D. a(u⃗+ v⃗) = au⃗+ av⃗.

E. (a+ b)v⃗ = av⃗ + bv⃗.



Vector Spaces (AT5)

Fact 3.5.5 Every Euclidean vector space Rn satisfies the following properties,
where u⃗, v⃗, w⃗ are Euclidean vectors and a, b are scalars.

1. Vector addition is associative: u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗.

2. Vector addition is commutative: u⃗+ v⃗ = v⃗ + u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ + z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ + (−v⃗) = z⃗.

5. Scalar multiplication is associative: a(bv⃗) = (ab)v⃗.

6. 1 is a multiplicative identity: 1v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a(u⃗+ v⃗) = (au⃗)+
(av⃗).

8. Scalar multiplication distributes over scalar addition: (a+ b)v⃗ = (av⃗) +
(bv⃗).



Vector Spaces (AT5)

Definition 3.5.6 A vector space V is any set of mathematical objects,
called vectors, and a set of numbers, called scalars, with associated addition
⊕ and scalar multiplication ⊙ operations that satisfy the following properties.
Let u⃗, v⃗, w⃗ be vectors belonging to V , and let a, b be scalars.
We always assume the codomain of our operations is V , i.e. that addition is

a map V × V → V and that scalar multiplication is a map R× V → V .
Likewise, we only consider “real” vector spaces, i.e. those whose scalars

come from R. However, one can similarly define vector spaces with scalars
from other fields like the complex or rational numbers.

1. Vector addition is associative: u⃗⊕ (v⃗ ⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗.

2. Vector addition is commutative: u⃗⊕ v⃗ = v⃗ ⊕ u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ ⊕ z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ ⊕ (−v⃗) = z⃗.

5. Scalar multiplication is associative: a⊙ (b⊙ v⃗) = (ab)⊙ v⃗.

6. 1 is a multiplicative identity: 1⊙ v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a ⊙ (u⃗ ⊕ v⃗) =
(a⊙ u⃗)⊕ (a⊙ v⃗).

8. Scalar multiplication distributes over scalar addition: (a + b) ⊙ v⃗ =
(a⊙ v⃗)⊕ (b⊙ v⃗).

♢



Vector Spaces (AT5)

Remark 3.5.7 Consider the set C of complex numbers with the usual defin-
tion for addition: (a+ bi)⊕ (c+ di) = (a+ c) + (b+ d)i.

Let u⃗ = a+ bi, v⃗ = c+ di, and w⃗ = e+ f i. Then

u⃗⊕ (v⃗ ⊕ w⃗) = (a+ bi)⊕ ((c+ di)⊕ (e+ f i))
= (a+ bi)⊕ ((c+ e) + (d+ f)i)
= (a+ c+ e) + (b+ d+ f)i

(u⃗⊕ v⃗)⊕ w⃗ = ((a+ bi)⊕ (c+ di))⊕ (e+ f i)
= ((a+ c) + (b+ d)i)⊕ (e+ f i)
= (a+ c+ e) + (b+ d+ f)i

This proves that complex addition is associative: u⃗⊕(v⃗⊕w⃗) = (u⃗⊕ v⃗)⊕w⃗.
The seven other vector space properties may also be verified, so C is an
example of a vector space.



Vector Spaces (AT5)

Remark 3.5.8 The following sets are just a few examples of vector spaces,
with the usual/natural operations for addition and scalar multiplication.

• Rn: Euclidean vectors with n components.

• C: Complex numbers.

• Mm,n: Matrices of real numbers with m rows and n columns.

• Pn: Polynomials of degree n or less.

• P : Polynomials of any degree.

• C(R): Real-valued continuous functions.



Vector Spaces (AT5)

Activity 3.5.9 Consider the set V = {(x, y) | y = 2x}.
Which of the following vectors is not in V ?

A. (0, 0)

B. (1, 2)

C. (2, 4)

D. (3, 8)



Vector Spaces (AT5)

Activity 3.5.10 Consider the set V = {(x, y) | y = 2x} with the operation ⊕
defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2).
Let u⃗, v⃗ be in V with u⃗ = (1, 2) and v⃗ = (2, 4). Using the operations

defined for V , which of the following is u⃗⊕ v⃗?

A. (2, 6)

B. (2, 8)

C. (3, 6)

D. (3, 8)



Vector Spaces (AT5)

Activity 3.5.11 Consider the set V = {(x, y) | y = 2x} with operations ⊕,⊙
defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c⊙ (x, y) = (cx, yc).

Let a = 2, b = −3 be scalars and u⃗ = (1, 2) ∈ V .

(a) Verify that

(a+ b)⊙ u⃗ =

(
−1,

1

2

)
.

(b) Compute the value of

(a⊙ u⃗)⊕ (b⊙ u⃗) .



Vector Spaces (AT5)

Activity 3.5.12 Consider the set V = {(x, y) | y = 2x} with operations ⊕,⊙
defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c⊙ (x, y) = (cx, yc).

Let a, b be unspecified scalars in R and u⃗ = (x, y) be an unspecified vector
in V .

(a) Show that both sides of the equation

(a+ b)⊙ (x, y) = (a⊙ (x, y))⊕ (b⊙ (x, y))

simplify to the expression (ax+ bx, yayb).

(b) Show that V contains an additive identity element z⃗ = ( ? , ? ) satisfying

(x, y)⊕ ( ? , ? ) = (x, y)

for all (x, y) ∈ V .
That is, pick appropriate values for z⃗ = ( ? , ? ) and then simplify
(x, y)⊕ ( ? , ? ) into just (x, y).

(c) Is V a vector space?

A. Yes
B. No
C. More work is required



Vector Spaces (AT5)

Remark 3.5.13 It turns out V = {(x, y) | y = 2x} with operations ⊕,⊙
defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c⊙ (x, y) = (cx, yc)

satisifes all eight properties from Definition 3.5.6.
Thus, V is a vector space.



Vector Spaces (AT5)

Activity 3.5.14 Let V = {(x, y) |x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + y1 + x2 + y2, x
2
1 + x22)

c⊙ (x, y) = (xc, y + c− 1).

(a) Show that 1 is the scalar multiplication identity element by simplifying
1⊙ (x, y) to (x, y).

(b) Show that V does not have an additive identity element z⃗ = (z, w) by
showing that (0,−1) ⊕ (z, w) ̸= (0,−1) no matter what the values of
z, w are.

(c) Is V a vector space?

A. Yes
B. No
C. More work is required



Vector Spaces (AT5)

Activity 3.5.15 Let V = {(x, y) |x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + 3y2) c⊙ (x, y) = (cx, cy).

(a) Show that scalar multiplication distributes over vector addition, i.e.

c⊙ ((x1, y1)⊕ (x2, y2)) = c⊙ (x1, y1)⊕ c⊙ (x2, y2)

for all c ∈ R, (x1, y1), (x2, y2) ∈ V .

(b) Show that vector addition is not associative, i.e.

(x1, y1)⊕ ((x2, y2)⊕ (x3, y3)) ̸= ((x1, y1)⊕ (x2, y2))⊕ (x3, y3)

for some vectors (x1, y1), (x2, y2), (x3, y3) ∈ V .

(c) Is V a vector space?

A. Yes
B. No
C. More work is required



Polynomial and Matrix Spaces (AT6)

3.6 Polynomial and Matrix Spaces (AT6)

Learning Outcomes
• Answer questions about vector spaces of polynomials or matrices.



Polynomial and Matrix Spaces (AT6)

Observation 3.6.1 Nearly every term we’ve defined for Euclidean vector
spaces Rn was actually defined for all kinds of vector spaces:

• Definition 2.1.2

• Definition 2.1.3

• Definition 2.3.1

• Definition 2.4.2

• Definition 2.5.3

• Definition 3.1.1

• Definition 3.1.2

• Definition 3.3.2

• Definition 3.3.7

• Definition 3.4.1

• Definition 3.4.4

• Definition 3.4.11



Polynomial and Matrix Spaces (AT6)

Activity 3.6.2 Let V be a vector space with the basis {v⃗1, v⃗2, v⃗3}. Which of
these completes the following definition for a bijective linear map T : V → R3?

T (v⃗) = T (av⃗1 + bv⃗2 + cv⃗3) =

 ?
?
?


A.

 0
0
0

 B.

 a+ b+ c
0
0

 C.

 a
b
c





Polynomial and Matrix Spaces (AT6)

Fact 3.6.3 Every vector space with finite dimension, that is, every vector
space V with a basis of the form {v⃗1, v⃗2, . . . , v⃗n} has a linear bijection T
with Euclidean space Rn that simply swaps its basis with the standard basis
{e⃗1, e⃗2, . . . , e⃗n} for Rn:

T (c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n) = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n =


c1
c2
...
cn


This transformation (in fact, any linear bijection between vector spaces) is
called an isomorphism, and V is said to be isomorphic to Rn.

Note, in particular, that every vector space of dimension n is isomorphic
to Rn.



Polynomial and Matrix Spaces (AT6)

Activity 3.6.4 The matrix space M2,2 =

{[
a b
c d

]∣∣∣∣a, b, c, d ∈ R
}

has the
basis {[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

(a) What is the dimension of M2,2?

A. 2
B. 3

C. 4
D. 5

(b) Which Euclidean space is M2,2 isomorphic to?

A. R2

B. R3

C. R4

D. R5

(c) Describe an isomorphism T : M2,2 → R ? :

T

([
a b
c d

])
=


?

...

?





Polynomial and Matrix Spaces (AT6)

Activity 3.6.5 The polynomial space P4 ={
a+ bx+ cx2 + dx3 + ex4

∣∣a, b, c, d, e ∈ R
}

has the basis{
1, x, x2, x3, x4

}
.

(a) What is the dimension of P4?

A. 2
B. 3

C. 4
D. 5

(b) Which Euclidean space is P4 isomorphic to?

A. R2

B. R3

C. R4

D. R5

(c) Describe an isomorphism T : P4 → R ? :

T
(
a+ bx+ cx2 + dx3 + ex4

)
=


?

...

?





Polynomial and Matrix Spaces (AT6)

Remark 3.6.6 Since any finite-dimensional vector space is isomorphic to a
Euclidean space Rn, one approach to answering questions about such spaces
is to answer the corresponding question about Rn.



Polynomial and Matrix Spaces (AT6)

Activity 3.6.7 Consider how to construct the polynomial x3 + x2 + 5x + 1
as a linear combination of polynomials from the set{

x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5
}

.

(a) Describe the vector space involved in this problem, and an isomorphic
Euclidean space and relevant Eucldean vectors that can be used to solve
this problem.

(b) Show how to construct an appropriate Euclidean vector from an appro-
riate set of Euclidean vectors.

(c) Use this result to answer the original question.



Polynomial and Matrix Spaces (AT6)

Observation 3.6.8 The space of polynomials P (of any degree) has the basis
{1, x, x2, x3, . . . }, so it is a natural example of an infinite-dimensional vector
space.

Since P and other infinite-dimensional vector spaces cannot be treated as
an isomorphic finite-dimensional Euclidean space Rn, vectors in such vector
spaces cannot be studied by converting them into Euclidean vectors. Fortu-
nately, most of the examples we will be interested in for this course will be
finite-dimensional.



Chapter 4

Matrices (MX)

Learning Outcomes
What algebraic structure do matrices have?
By the end of this chapter, you should be able to...

1. Multiply matrices.

2. Determine if a matrix is invertible, and if so, compute its inverse.

3. Invert an appropriate matrix to solve a system of linear equations.

4. Express row operations through matrix multiplication.
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Matrices and Multiplication (MX1)

4.1 Matrices and Multiplication (MX1)

Learning Outcomes
• Multiply matrices.



Matrices and Multiplication (MX1)

Observation 4.1.1 If T : Rn → Rm and S : Rm → Rk are linear maps, then
the composition map S ◦T computed as (S ◦T )(v⃗) = S(T (v⃗)) is a linear map
from Rn → Rk.

Rn Rm Rk

S◦T

T S

Figure 16 The composition of two linear maps.



Matrices and Multiplication (MX1)

Activity 4.1.2 Let T : R3 → R2 be defined by the 2× 3 standard matrix B
and S : R2 → R4 be defined by the 4× 2 standard matrix A:

B =

[
2 1 −3
5 −3 4

]
A =


1 2
0 1
3 5
−1 −2

 .

(a) What are the domain and codomain of the composition map S ◦ T?

A. The domain is R3 and the
codomain is R2

B. The domain is R2 and the
codomain is R4

C. The domain is R3 and the
codomain is R4

D. The domain is R4 and the
codomain is R3

(b) What size will the standard matrix of S ◦ T be?

A. 4 (rows) × 3 (columns)
B. 3 (rows) × 4 (columns)

C. 3 (rows) × 2 (columns)
D. 2 (rows) × 4 (columns)

(c) Compute

(S ◦ T )(e⃗1) = S(T (e⃗1)) = S

([
2
5

])
=


?
?
?
?

 .

(d) Compute (S ◦ T )(e⃗2).

(e) Compute (S ◦ T )(e⃗3).

(f) Use (S ◦T )(e⃗1), (S ◦T )(e⃗2), (S ◦T )(e⃗3) to write the standard matrix for
S ◦ T .



Matrices and Multiplication (MX1)

Definition 4.1.3 We define the product AB of a m × n matrix A and a
n× k matrix B to be the m× k standard matrix of the composition map of
the two corresponding linear functions.

For the previous activity, T was a map R3 → R2, and S was a map
R2 → R4, so S ◦ T gave a map R3 → R4 with a 4× 3 standard matrix:

AB =


1 2
0 1
3 5
−1 −2

[
2 1 −3
5 −3 4

]

= [(S ◦ T )(e⃗1) (S ◦ T )(e⃗2) (S ◦ T )(e⃗3)] =


12 −5 5
5 −3 4
31 −12 11
−12 5 −5

 .

♢



Matrices and Multiplication (MX1)

Activity 4.1.4 Let S : R3 → R2 be given by the matrix A =

[
−4 −2 3
0 1 1

]
and T : R2 → R3 be given by the matrix B =

 2 3
1 −1
0 −1

.

(a) Write the dimensions (rows × columns) for A, B, AB, and BA.

(b) Find the standard matrix AB of S ◦ T .

(c) Find the standard matrix BA of T ◦ S.



Matrices and Multiplication (MX1)

Activity 4.1.5 Consider the following three matrices.

A =

[
1 0 −3
3 2 1

]
B =


2 2 1 0 1
1 1 1 −1 0
0 0 3 2 1
−1 5 7 2 1

 C =


2 2
0 −1
3 1
4 0


(a) Find the domain and codomain of each of the three linear maps corre-

sponding to A, B, and C.

(b) Only one of the matrix products AB,AC,BA,BC,CA,CB can actually
be computed. Compute it.



Matrices and Multiplication (MX1)

Activity 4.1.6 Let B =

 3 −4 0
2 0 −1
0 −3 3

, and let A =

 2 7 −1
0 3 2
1 1 −1

.

(a) Compute the product BA by hand.

(b) Check your work using technology. Using Octave:

B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
B*A



Matrices and Multiplication (MX1)

Activity 4.1.7 Of the following three matrices, only two may be multiplied.

A =

[
−1 3 −2 −3
1 −4 2 3

]
B =

[
1 −6 −1
0 1 0

]
C =


1 −1 −1
0 1 −2
−2 4 −1
−2 3 −1


Explain which two can be multiplied and why. Then show how to find their
product.



Matrices and Multiplication (MX1)

Activity 4.1.8 Let T

([
x
y

])
=


x+ 2y

y
3x+ 5y
−x− 2y

 In Fact 3.2.10 we adopted

the notation

T

([
x
y

])
=


x+ 2y

y
3x+ 5y
−x− 2y

 = A

[
x
y

]
=


1 2
0 1
3 5
−1 −2

[
x
y

]
.

Verify that


1 2
0 1
3 5
−1 −2

[
x
y

]
=


x+ 2y

y
3x+ 5y
−x− 2y

 in terms of matrix multiplica-

tion.



The Inverse of a Matrix (MX2)

4.2 The Inverse of a Matrix (MX2)

Learning Outcomes
• Determine if a matrix is invertible, and if so, compute its inverse.



The Inverse of a Matrix (MX2)

Activity 4.2.1 Let A =

 2 7 −1
0 3 2
1 1 −1

. Find a 3 × 3 matrix B such that

BA = A, that is, ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1


Check your guess using technology.



The Inverse of a Matrix (MX2)

Definition 4.2.2 The identity matrix In (or just I when n is obvious from
context) is the n× n matrix

In =


1 0 · · · 0

0 1 . . . ...
... . . . . . . 0
0 · · · 0 1

 .

It has a 1 on each diagonal element and a 0 in every other position. ♢



The Inverse of a Matrix (MX2)

Fact 4.2.3 For any square matrix A, IA = AI = A: 1 0 0
0 1 0
0 0 1

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1

 1 0 0
0 1 0
0 0 1

 =

 2 7 −1
0 3 2
1 1 −1





The Inverse of a Matrix (MX2)

Activity 4.2.4 Let T : Rn → Rm be a linear map with standard matrix A.
Sort the following items into three groups of statements: a group that means
T is injective, a group that means T is surjective, and a group that means T
is bijective.

A. T (x⃗) = b⃗ has a solution for all b⃗ ∈ Rm

B. T (x⃗) = b⃗ has a unique solution for all b⃗ ∈ Rm

C. T (x⃗) = 0⃗ has a unique solution.

D. The columns of A span Rm

E. The columns of A are linearly independent

F. The columns of A are a basis of Rm

G. Every column of RREF(A) has a pivot

H. Every row of RREF(A) has a pivot

I. m = n and RREF(A) = I



The Inverse of a Matrix (MX2)

Definition 4.2.5 Let T : Rn → Rn be a linear bijection with standard matrix
A.

By item (B) from Activity 4.2.4 we may define an inverse map T−1 :

Rn → Rn that defines T−1(⃗b) as the unique solution x⃗ satisfying T (x⃗) = b⃗,
that is, T (T−1(⃗b)) = b⃗.

Furthermore, let

A−1 = [T−1(e⃗1) · · · T−1(e⃗n)]

be the standard matrix for T−1. We call A−1 the inverse matrix of A, and
we also say that A is an invertible matrix. ♢



The Inverse of a Matrix (MX2)

Activity 4.2.6 Let T : R3 → R3 be the linear bijection given by the standard

matrix A =

 2 −1 −6
2 1 3
1 1 4

.

(a) To find x⃗ = T−1(e⃗1), we need to find the unique solution for T (x⃗) = e⃗1.
Which of these linear systems can be used to find this solution?

A.
2x1 −1x2 −6x3 = x1
2x1 +1x2 +3x3 = 0
1x1 +1x2 +4x3 = 0

B.
2x1 −1x2 −6x3 = x1
2x1 +1x2 +3x3 = x2
1x1 +1x2 +4x3 = x3

C.
2x1 −1x2 −6x3 = 1
2x1 +1x2 +3x3 = 0
1x1 +1x2 +4x3 = 0

D.
2x1 −1x2 −6x3 = 1
2x1 +1x2 +3x3 = 1
1x1 +1x2 +4x3 = 1

(b) Use that system to find the solution x⃗ = T−1(e⃗1) for T (x⃗) = e⃗1.

(c) Similarly, solve T (x⃗) = e⃗2 to find T−1(e⃗2), and solve T (x⃗) = e⃗3 to find
T−1(e⃗3).

(d) Use these to write

A−1 = [T−1(e⃗1) T−1(e⃗2) T−1(e⃗3)],

the standard matrix for T−1.



The Inverse of a Matrix (MX2)

Activity 4.2.7 Find the inverse A−1 of the matrix

A =


0 0 0 −1
1 0 −1 −4
1 1 0 −4
1 −1 −1 2


by computing how it transforms each of the standard basis vectors for R4:
T−1(e⃗1), T−1(e⃗2), T−1(e⃗3), and T−1(e⃗4).



The Inverse of a Matrix (MX2)

Activity 4.2.8 Is the matrix

 2 3 1
−1 −4 2
0 −5 5

 invertible?

A. Yes, because its transformation is a bijection.

B. Yes, because its transformation is not a bijection.

C. No, because its transformation is a bijection.

D. No, because its transformation is not a bijection.



The Inverse of a Matrix (MX2)

Observation 4.2.9 An n×n matrix A is invertible if and only if RREF(A) =
In.



The Inverse of a Matrix (MX2)

Activity 4.2.10 Let T : R2 → R2 be the bijective linear map defined
by T

([
x
y

])
=

[
2x− 3y
−3x+ 5y

]
, with the inverse map T−1

([
x
y

])
=[

5x+ 3y
3x+ 2y

]
.

(a) Compute (T−1 ◦ T )
([

−2
1

])
.

(b) If A is the standard matrix for T and A−1 is the standard matrix for
T−1, find the 2× 2 matrix

A−1A =

[
? ?
? ?

]
.



The Inverse of a Matrix (MX2)

Observation 4.2.11 T−1 ◦T = T ◦T−1 is the identity map for any bijective
linear transformation T . Therefore A−1A = AA−1 equals the identity matrix
I for any invertible matrix A.



Solving Systems with Matrix Inverses (MX3)

4.3 Solving Systems with Matrix Inverses (MX3)

Learning Outcomes
• Invert an appropriate matrix to solve a system of linear equations.



Solving Systems with Matrix Inverses (MX3)

Activity 4.3.1 Consider the following linear system with a unique solution:

3x1 − 2x2 − 2x3 − 4x4 = −7
2x1 − x2 − x3 − x4 = −1
−x1 + x3 = −1

− x2 − 2x4 = −5

(a) Suppose we let

T



x1
x2
x3
x4


 =


3x1 − 2x2 − 2x3 − 4x4
2x1 − x2 − x3 − x4
−x1 + x3

− x2 − 2x4

 .

Which of these choices would help us solve the given system?

A. Compute T



−7
−1
−1
−5




B. Find


x1
x2
x3
x4

 where T



x1
x2
x3
x4


 =


−7
−1
−1
−5


(b) How can we express this in terms of matrix multiplication?

A.


3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2



x1
x2
x3
x4

 =


−7
−1
−1
−5



B.


x1
x2
x3
x4

 =


3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2



−7
−1
−1
−5



C.


x1
x2
x3
x4




3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2

 =


−7
−1
−1
−5





Solving Systems with Matrix Inverses (MX3)

D.


x1
x2
x3
x4

 =


−7
−1
−1
−5




3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2


(c) How could a matrix equation of the form Ax⃗ = b⃗ be solved for x⃗?

A. Multiply: (RREFA)(Ax⃗) = (RREFA)⃗b

B. Add: (RREFA) + Ax⃗ = (RREFA) + b⃗

C. Multiply: (A−1)(Ax⃗) = (A−1)⃗b

D. Add: (A−1) + Ax⃗ = (A−1) + b⃗

(d) Find


x1
x2
x3
x4

 using the method you chose in (c).



Solving Systems with Matrix Inverses (MX3)

Remark 4.3.2 The linear system described by the augmented matrix [A | b⃗]
has exactly the same solution set as the matrix equation Ax⃗ = b⃗.

When A is invertible, then we have both [A | b⃗] ∼ [I | x⃗] and x⃗ = A−1⃗b,
which can be seen as

Ax⃗ = b⃗

⇒ A−1Ax⃗ = A−1⃗b

⇒ x⃗ = A−1⃗b



Solving Systems with Matrix Inverses (MX3)

Activity 4.3.3 Consider the vector equation

x1

 1
2
−2

+ x2

 −2
−3
3

+ x3

 1
4
−3

 =

 −3
5
−1


with a unique solution.

(a) Explain and demonstrate how this problem can be restated using matrix
multiplication.

(b) Use the properties of matrix multiplication to find the unique solution.



Row Operations as Matrix Multiplication (MX4)

4.4 Row Operations as Matrix Multiplication
(MX4)

Learning Outcomes
• Express row operations through matrix multiplication.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.1 Tweaking the identity matrix slightly allows us to write row
operations in terms of matrix multiplication.

(a) Which of these tweaks of the identity matrix yields a matrix that dou-
bles the third row of A when left-multiplying? (2R3 → R3) ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
2 2 −2


A.

 2 0 0
0 1 0
0 0 1


B.

 1 0 0
0 2 0
0 0 1


C.

 1 0 0
0 1 0
0 0 2


D.

 2 0 0
0 2 0
0 0 2


(b) Which of these tweaks of the identity matrix yields a matrix that swaps

the first and third rows of A when left-multiplying? (R1 ↔ R3) ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
1 1 −1
0 3 2


A.

 1 0 0
0 0 1
0 1 0


B.

 0 1 0
0 0 1
1 0 0


C.

 0 0 1
0 1 0
1 0 0


D.

 0 1 0
1 0 0
0 0 1


(c) Which of these tweaks of the identity matrix yields a matrix that adds

5 times the third row of A to the first row when left-multiplying? (R1+
5R3 → R1) ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 + 5(1) 7 + 5(1) −1 + 5(−1)
0 3 2
1 1 −1





Row Operations as Matrix Multiplication (MX4)

A.

 1 0 1
0 1 0
0 0 5


B.

 1 0 5
0 1 0
0 0 1


C.

 5 5 5
0 1 0
0 0 1


D.

 1 0 5
0 1 0
0 0 5





Row Operations as Matrix Multiplication (MX4)

Fact 4.4.2 If R is the result of applying a row operation to I, then RA is the
result of applying the same row operation to A.

• Scaling a row: R =

 c 0 0
0 1 0
0 0 1



• Swapping rows: R =

 0 1 0
1 0 0
0 0 1



• Adding a row multiple to another row: R =

 1 0 c
0 1 0
0 0 1


Such matrices can be chained together to emulate multiple row operations. In
particular,

RREF(A) = Rk . . . R2R1A

for some sequence of matrices R1, R2, . . . , Rk.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.3 What would happen if you right-multiplied by the tweaked
identity matrix rather than left-multiplied?

A. The manipulated rows would be reversed.

B. Columns would be manipulated instead of rows.

C. The entries of the resulting matrix would be rotated 180 degrees.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.4 Consider the two row operations R2 ↔ R3 and R1+R2 → R1

applied as follows to show A ∼ B:

A =

 −1 4 5
0 3 −1
1 2 3

 ∼

 −1 4 5
1 2 3
0 3 −1


∼

 −1 + 1 4 + 2 5 + 3
1 2 3
0 3 −1

 =

 0 6 8
1 2 3
0 3 −1

 = B

Express these row operations as matrix multiplication by expressing B as the
product of two matrices and A:

B =

 ? ? ?
? ? ?
? ? ?

 ? ? ?
? ? ?
? ? ?

A

Check your work using technology.



Row Operations as Matrix Multiplication (MX4)

Activity 4.4.5 Let A be any 4× 4 matrix.

(a) Give a 4× 4 matrix M that may be used to perform the row operation
−5R2 → R2.

(b) Give a 4× 4 matrix Y that may be used to perform the row operation
R2 ↔ R3.

(c) Use matrix multiplication to describe the matrix obtained by applying
−5R2 → R2 and then R2 ↔ R3 to A (note the order).



Chapter 5

Geometric Properties of Lin-
ear Maps (GT)

Learning Outcomes
How do we understand linear maps geometrically?
By the end of this chapter, you should be able to...

1. Describe how a row operation affects the determinant of a matrix.

2. Compute the determinant of a 4× 4 matrix.

3. Find the eigenvalues of a 2× 2 matrix.

4. Find a basis for the eigenspace of a 4×4 matrix associated with a given
eigenvalue.
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Row Operations and Determinants (GT1)

5.1 Row Operations and Determinants (GT1)

Learning Outcomes
• Describe how a row operation affects the determinant of a matrix.



Row Operations and Determinants (GT1)

Activity 5.1.1 The image in Figure 46 illustrates how the linear transfor-
mation T : R2 → R2 given by the standard matrix A =

[
2 0
0 3

]
transforms

the unit square.

Ae⃗1 =

[
2
0

]
Ae⃗2 =

[
0
3

]

Figure 17 Transformation of the unit square by the matrix A.

(a) What are the lengths of Ae⃗1 and Ae⃗2?

(b) What is the area of the transformed unit square?



Row Operations and Determinants (GT1)

Activity 5.1.2 The image below illustrates how the linear transformation
S : R2 → R2 given by the standard matrix B =

[
2 3
0 4

]
transforms the unit

square.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

Figure 18 Transformation of the unit square by the matrix B

(a) What are the lengths of Be⃗1 and Be⃗2?

(b) What is the area of the transformed unit square?



Row Operations and Determinants (GT1)

Observation 5.1.3 It is possible to find two nonparallel vectors that are
scaled but not rotated by the linear map given by B.

Be⃗1 =

[
2 3
0 4

] [
1
0

]
=

[
2
0

]
= 2e⃗1

B

[
3
4
1
2

]
=

[
2 3
0 4

] [
3
4
1
2

]
=

[
3
2

]
= 4

[
3
4
1
2

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 19 Certain vectors are stretched out without being rotated.
The process for finding such vectors will be covered later in this chapter.



Row Operations and Determinants (GT1)

Observation 5.1.4 Notice that while a linear map can transform vectors
in various ways, linear maps always transform parallelograms into parallel-
ograms, and these areas are always transformed by the same factor: in the
case of B =

[
2 3
0 4

]
, this factor is 8.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]
B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 20 A linear map transforming parallelograms into parallelograms.
Since this change in area is always the same for a given linear map, it will

be equal to the value of the transformed unit square (which begins with area
1).



Row Operations and Determinants (GT1)

Remark 5.1.5 We will define the determinant of a square matrix B, or
det(B) for short, to be the factor by which B scales areas. In order to figure
out how to compute it, we first figure out the properties it must satisfy.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]
B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 21 The linear transformation B scaling areas by a constant factor,
which we call the determinant



Row Operations and Determinants (GT1)

Activity 5.1.6 The transformation of the unit square by the standard matrix
[e⃗1 e⃗2] =

[
1 0
0 1

]
= I is illustrated below. If det([e⃗1 e⃗2]) = det(I) is the area

of resulting parallelogram, what is the value of det([e⃗1 e⃗2]) = det(I)?

e⃗1 =

[
1
0

]e⃗2 =

[
0
1

]

Figure 22 The transformation of the unit square by the identity matrix.
The value for det([e⃗1 e⃗2]) = det(I) is:

A. 0

B. 1

C. 2

D. 4



Row Operations and Determinants (GT1)

Activity 5.1.7 The transformation of the unit square by the standard matrix
[v⃗ v⃗] is illustrated below: both T (e⃗1) = T (e⃗2) = v⃗. If det([v⃗ v⃗]) is the area
of the generated parallelogram, what is the value of det([v⃗ v⃗])?

v⃗

Figure 23 Transformation of the unit square by a matrix with identical
columns.

The value of det([v⃗ v⃗]) is:

A. 0

B. 1

C. 2

D. 4



Row Operations and Determinants (GT1)

Activity 5.1.8 The transformations of the unit square by the standard matri-
ces [v⃗ w⃗] and [cv⃗ w⃗] are illustrated below. Describe the value of det([cv⃗ w⃗]).

v⃗

w⃗

cv⃗v⃗

w⃗

Figure 24 The parallelograms generated by v⃗ and w⃗/cw⃗
Describe the value of det([cv⃗ w⃗]):

A. det([v⃗ w⃗])

B. c det([v⃗ w⃗])

C. c2 det([v⃗ w⃗])

D. Cannot be determined from this
information.



Row Operations and Determinants (GT1)

Remark 5.1.9 Consider the vectors u⃗, v⃗, u⃗+ v⃗, and w⃗ displayed below. Each
pair of vectors generates a parallelogram, and the area of each parallelogram
can be described in terms of determinants.

u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 25 The vectors u⃗, v⃗, u⃗+ v⃗ and w⃗



Row Operations and Determinants (GT1)

Remark 5.1.10 For example, det([u⃗ w⃗]) represents the shaded area shown
below.

u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 26 Parallelogram generated by u⃗ and w⃗



Row Operations and Determinants (GT1)

Remark 5.1.11 Similarly, det([v⃗ w⃗]) represents the shaded area shown be-
low.

u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 27 Parallelogram generated by v⃗ and w⃗



Row Operations and Determinants (GT1)

Activity 5.1.12 The parallelograms generated by the standard matrices
[u⃗ w⃗], [v⃗ w⃗] and [u⃗+ v⃗ w⃗] are illustrated below.

u⃗

w⃗
v⃗

u⃗+ v⃗

Figure 28 Parallelogram generated by u⃗+ v⃗ and w⃗

Describe the value of det([u⃗+ v⃗ w⃗]).

A. det([u⃗ w⃗]) = det([v⃗ w⃗])

B. det([u⃗ w⃗]) + det([v⃗ w⃗])

C. det([u⃗ w⃗]) det([v⃗ w⃗])

D. Cannot be determined from this
information.



Row Operations and Determinants (GT1)

Definition 5.1.13 The determinant is the unique function det : Mn,n → R
satisfying these properties:

1. det(I) = 1

2. det(A) = 0 whenever two columns of the matrix are identical.

3. det[· · · cv⃗ · · · ] = c det[· · · v⃗ · · · ], assuming no other columns change.

4. det[· · · v⃗ + w⃗ · · · ] = det[· · · v⃗ · · · ] + det[· · · w⃗ · · · ], assuming no
other columns change.

Note that these last two properties together can be phrased as “The de-
terminant is linear in each column.” ♢



Row Operations and Determinants (GT1)

Observation 5.1.14 The determinant must also satisfy other properties.
Consider det([v⃗ w⃗ + cv⃗]) and det([v⃗ w⃗]).

v⃗

w⃗

w⃗ + cv⃗

Figure 29 Parallelogram built by w⃗ + cv⃗ and w⃗

The base of both parallelograms is v⃗, while the height has not changed,
so the determinant does not change either. This can also be proven using the
other properties of the determinant:

det([v⃗ + cw⃗ w⃗]) = det([v⃗ w⃗]) + det([cw⃗ w⃗])

= det([v⃗ w⃗]) + c det([w⃗ w⃗])

= det([v⃗ w⃗]) + c · 0
= det([v⃗ w⃗])



Row Operations and Determinants (GT1)

Remark 5.1.15 Swapping columns may be thought of as a reflection, which
is represented by a negative determinant. For example, the following matrices
transform the unit square into the same parallelogram, but the second matrix
reflects its orientation.

A =

[
2 3
0 4

]
detA = 8 B =

[
3 2
4 0

]
detB = −8

Ae⃗1 =

[
2
0

]

Ae⃗2 =

[
3
4

]

Be⃗2 =

[
2
0

]

Be⃗1 =

[
3
4

]

Figure 30 Reflection of a parallelogram as a result of swapping columns.



Row Operations and Determinants (GT1)

Observation 5.1.16 The fact that swapping columns multiplies determi-
nants by a negative may be verified by adding and subtracting columns.

det([v⃗ w⃗]) = det([v⃗ + w⃗ w⃗])

= det([v⃗ + w⃗ w⃗ − (v⃗ + w⃗)])

= det([v⃗ + w⃗ − v⃗])

= det([v⃗ + w⃗ − v⃗ − v⃗])

= det([w⃗ − v⃗])

= − det([w⃗ v⃗])



Row Operations and Determinants (GT1)

Fact 5.1.17 To summarize, we’ve shown that the column versions of the
three row-reducing operations a matrix may be used to simplify a determinant
in the following way:

1. Multiplying a column by a scalar multiplies the determinant by that
scalar:

c det([· · · v⃗ · · · ]) = det([· · · cv⃗ · · · ])

2. Swapping two columns changes the sign of the determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = − det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column does not change the
determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])



Row Operations and Determinants (GT1)

Activity 5.1.18 The transformation given by the standard matrix A scales
areas by 4, and the transformation given by the standard matrix B scales
areas by 3. By what factor does the transformation given by the standard
matrix AB scale areas?

B A

Figure 31 Area changing under the composition of two linear maps

A. 1

B. 7

C. 12

D. Cannot be determined



Row Operations and Determinants (GT1)

Fact 5.1.19 Since the transformation given by the standard matrix AB is
obtained by applying the transformations given by A and B, it follows that

det(AB) = det(A) det(B) = det(B) det(A) = det(BA).



Row Operations and Determinants (GT1)

Remark 5.1.20 Recall that row operations may be produced by matrix
multiplication.

• Multiply the first row of A by c:


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A

• Swap the first and second row of A:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

A

• Add c times the third row to the first row of A:


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

A



Row Operations and Determinants (GT1)

Fact 5.1.21 The determinants of row operation matrices may be computed
by manipulating columns to reduce each matrix to the identity:

• Scaling a row: det


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c

• Swapping rows: det


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = −1 det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = −1

• Adding a row multiple to another row: det


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

det


1 0 c− 1c 0
0 1 0− 0c 0
0 0 1− 0c 0
0 0 0− 0c 1

 = det(I) = 1



Row Operations and Determinants (GT1)

Activity 5.1.22 Consider the row operation R1 + 4R3 → R1 applied as
follows to show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


1 + 4(9) 2 + 4(10) 3 + 4(11) 4 + 4(12)

5 6 7 8
9 10 11 12
13 14 15 16

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation

to I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

(b) Find detR by comparing with the previous slide.

(c) If C ∈ M4,4 is a matrix with det(C) = −3, find

det(RC) = det(R) det(C).



Row Operations and Determinants (GT1)

Activity 5.1.23 Consider the row operation R1 ↔ R3 applied as follows to
show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


9 10 11 12
5 6 7 8
1 2 3 4
13 14 15 16

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation
to I.

(b) If C ∈ M4,4 is a matrix with det(C) = 5, find det(RC).



Row Operations and Determinants (GT1)

Activity 5.1.24 Consider the row operation 3R2 → R2 applied as follows to
show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


1 2 3 4

3(5) 3(6) 3(7) 3(8)
9 10 11 12
13 14 15 16

 = B

(a) Find a matrix R such that B = RA.

(b) If C ∈ M4,4 is a matrix with det(C) = −7, find det(RC).



Row Operations and Determinants (GT1)

Activity 5.1.25 Let A be any 4× 4 matrix with determinant 2.

(a) Let B be the matrix obtained from A by applying the row operation
R1 − 5R3 → R1. What is detB?

A -4 B -2 C 2 D 10

(b) Let M be the matrix obtained from A by applying the row operation
R3 ↔ R1. What is detM?

A -4 B -2 C 2 D 10

(c) Let P be the matrix obtained from A by applying the row operation
2R4 → R4. What is detP?

A -4 B -2 C 2 D 10



Row Operations and Determinants (GT1)

Remark 5.1.26 Recall that the column versions of the three row-reducing
operations a matrix may be used to simplify a determinant:

1. Multiplying columns by scalars:

det([· · · cv⃗ · · · ]) = c det([· · · v⃗ · · · ])

2. Swapping two columns:

det([· · · v⃗ · · · w⃗ · · · ]) = − det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])



Row Operations and Determinants (GT1)

Remark 5.1.27 The determinants of row operation matrices may be com-
puted by manipulating columns to reduce each matrix to the identity:

• Scaling a row:


1 0 0 0
0 c 0 0
0 0 1 0
0 0 0 0



• Swapping rows:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0



• Adding a row multiple to another row:


1 0 0 0
0 1 c 0
0 0 1 0
0 0 0 1





Row Operations and Determinants (GT1)

Fact 5.1.28 Thus we can also use both row operations to simplify determi-
nants:

• Multiplying rows by scalars:

det

 ...
cR
...

 = c det

 ...
R
...


• Swapping two rows:

det


...
R
...
S
...

 = − det


...
S
...
R
...


• Adding multiples of rows/columns to other rows:

det


...
R
...
S
...

 = det


...

R + cS
...
S
...





Row Operations and Determinants (GT1)

Activity 5.1.29 Complete the following derivation for a formula calculating
2× 2 determinants:

det
[
a b
c d

]
= ? det

[
1 b/a
c d

]
= ? det

[
1 b/a

c− c d− bc/a

]
= ? det

[
1 b/a
0 d− bc/a

]
= ? det

[
1 b/a
0 1

]
= ? det

[
1 0
0 1

]
= ? det I
= ?



Row Operations and Determinants (GT1)

Observation 5.1.30 So we may compute the determinant of
[
2 4
2 3

]
by

using determinant properties to manipulate its rows/columns to reduce the
matrix to I:

det
[
2 4
2 3

]
= 2 det

[
1 2
2 3

]
= 2 det

[
1 2
0 −1

]
= −2 det

[
1 −2
0 1

]
= −2 det

[
1 0
0 1

]
= −2

Or we may use a formula:

det
[
2 4
2 3

]
= (2)(3)− (4)(2) = −2



Computing Determinants (GT2)

5.2 Computing Determinants (GT2)

Learning Outcomes
• Compute the determinant of a 4× 4 matrix.



Computing Determinants (GT2)

Remark 5.2.1 We’ve seen that row reducing all the way into RREF gives
us a method of computing determinants.

However, we learned in Chapter 1 that this can be tedious for large ma-
trices. Thus, we will try to figure out how to turn the determinant of a larger
matrix into the determinant of a smaller matrix.



Computing Determinants (GT2)

Activity 5.2.2 The following image illustrates the transformation of the unit

cube by the matrix

 1 1 0
1 3 1
0 0 1

.

 0
1
1



 1
1
0



 1
3
0

h = 1

Figure 32 Transformation of the unit cube by the linear transformation.
Recall that for this solid V = Bh, where h is the height of the solid and

B is the area of its parallelogram base. So what must its volume be?

A. det
[
1 1
1 3

]

B. det
[
1 0
3 1

]
C. det

[
1 1
0 1

]

D. det
[
1 3
0 0

]



Computing Determinants (GT2)

Fact 5.2.3 If row i contains all zeros except for a 1 on the main (upper-left
to lower-right) diagonal, then both column and row i may be removed without
changing the value of the determinant.

det


3 2 −1 3
0 1 0 0
−1 4 1 0
5 0 11 1

 = det

 3 −1 3
−1 1 0
5 11 1


Since row and column operations affect the determinants in the same way,

the same technique works for a column of all zeros except for a 1 on the main
diagonal.

det


3 0 −1 5
2 1 4 0
−1 0 1 11
3 0 0 1

 = det

 3 −1 5
−1 1 11
3 0 1


Put another way, if you have either a column or row from the identity

matrix, you can cancel both the column and row containing the 1.



Computing Determinants (GT2)

Activity 5.2.4 Remove an appropriate row and column of det

 1 0 0
1 5 12
3 2 −1


to simplify the determinant to a 2× 2 determinant.



Computing Determinants (GT2)

Activity 5.2.5 Simplify det

 0 3 −2
2 5 12
0 2 −1

 to a multiple of a 2×2 determinant

by first doing the following:

(a) Factor out a 2 from a column.

(b) Swap rows or columns to put a 1 on the main diagonal.



Computing Determinants (GT2)

Activity 5.2.6 Simplify det

 4 −2 2
3 1 4
1 −1 3

 to a multiple of a 2×2 determinant

by first doing the following:

(a) Use row/column operations to create two zeroes in the same row or
column.

(b) Factor/swap as needed to get a row/column of all zeroes except a 1 on
the main diagonal.



Computing Determinants (GT2)

Observation 5.2.7 Using row/column operations, you can introduce zeros
and reduce dimension to whittle down the determinant of a large matrix to
a determinant of a smaller matrix.

det


4 3 0 1
2 −2 4 0
−1 4 1 5
2 8 0 3

 = det


4 3 0 1
6 −18 0 −20
−1 4 1 5
2 8 0 3

 = det

 4 3 1
6 −18 −20
2 8 3



= · · · = −2 det

 1 3 4
0 21 43
0 −1 −10

 = −2 det
[

21 43
−1 −10

]

= · · · = −2 det
[
−167 21
0 1

]
= −2 det[−167]

= −2(−167) det(I) = 334



Computing Determinants (GT2)

Activity 5.2.8 Rewrite

det


2 1 −2 1
3 0 1 4
−2 2 3 0
−2 0 −3 −3


as a multiple of a determinant of a 3× 3 matrix.



Computing Determinants (GT2)

Activity 5.2.9 Compute det


2 3 5 0
0 3 2 0
1 2 0 3
−1 −1 2 2

 by using any combination of

row/column operations.



Computing Determinants (GT2)

Observation 5.2.10 Another option is to take advantage of the fact that the
determinant is linear in each row or column. This approach is called Laplace
expansion or cofactor expansion.

For example, since
[
1 2 4

]
= 1

[
1 0 0

]
+ 2

[
0 1 0

]
+ 4

[
0 0 1

]
,

det

 2 3 5
−1 3 5
1 2 4

 = 1 det

 2 3 5
−1 3 5
1 0 0

+ 2 det

 2 3 5
−1 3 5
0 1 0

+ 4 det

 2 3 5
−1 3 5
0 0 1


= −1 det

 5 3 2
5 3 −1
0 0 1

− 2 det

 2 5 3
−1 5 3
0 0 1

+ 4 det

 2 3 5
−1 3 5
0 0 1


= − det

[
5 3
5 3

]
− 2 det

[
2 5
−1 5

]
+ 4 det

[
2 3
−1 3

]



Computing Determinants (GT2)

Observation 5.2.11 Recall the formula for a 2 × 2 determinant found in
Observation 5.1.30:

det
[
a b
c d

]
= ad− bc.

There are formulas and algorithms for the determinants of larger matrices,
but they can be pretty tedious to use. For example, writing out a formula
for a 4× 4 determinant would require 24 different terms!

det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 = a11(a22(a33a44−a43a34)−a23(a32a44−a42a34)+. . . )+. . .



Computing Determinants (GT2)

Activity 5.2.12 Based on the previous activities, which technique is easier
for computing determinants?

A. Memorizing formulas.

B. Using row/column operations.

C. Laplace expansion.

D. Some other technique.



Computing Determinants (GT2)

Activity 5.2.13 Use your preferred technique to compute

det


4 −3 0 0
1 −3 2 −1
3 2 0 3
0 −3 2 −2

.



Eigenvalues and Characteristic Polynomials (GT3)

5.3 Eigenvalues and Characteristic Polynomi-
als (GT3)

Learning Outcomes
• Find the eigenvalues of a 2× 2 matrix.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.1 An invertible matrix M and its inverse M−1 are given below:

M =

[
1 2
3 4

]
M−1 =

[
−2 1
3/2 −1/2

]
Which of the following is equal to det(M) det(M−1)?

A. −1

B. 0

C. 1

D. 4



Eigenvalues and Characteristic Polynomials (GT3)

Fact 5.3.2 For every invertible matrix M ,

det(M) det(M−1) = det(I) = 1

so det(M−1) = 1
det(M).

Furthermore, a square matrix M is invertible if and only if det(M) ̸= 0.



Eigenvalues and Characteristic Polynomials (GT3)

Observation 5.3.3 Consider the linear transformation A : R2 → R2 given
by the matrix A =

[
2 2
0 3

]
.

Ae⃗1e⃗1

Ae⃗2

e⃗2

Figure 33 Transformation of the unit square by the linear transformation A

It is easy to see geometrically that

A

[
1
0

]
=

[
2 2
0 3

] [
1
0

]
=

[
2
0

]
= 2

[
1
0

]
.

It is less obvious (but easily checked once you find it) that

A

[
2
1

]
=

[
2 2
0 3

] [
2
1

]
=

[
6
3

]
= 3

[
2
1

]
.



Eigenvalues and Characteristic Polynomials (GT3)

Definition 5.3.4 Let A ∈ Mn,n. An eigenvector for A is a vector x⃗ ∈ Rn

such that Ax⃗ is parallel to x⃗.

Ae⃗1 = 2e⃗1e⃗1

Ae⃗2

e⃗2

A

[
2
1

]
= 3

[
2
1

][
2
1

]

Figure 34 The map A stretches out the eigenvector
[
2
1

]
by a factor of 3

(the corresponding eigenvalue).

In other words, Ax⃗ = λx⃗ for some scalar λ. If x⃗ ̸= 0⃗, then we say x⃗ is a
nontrivial eigenvector and we call this λ an eigenvalue of A. ♢



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.5 Finding the eigenvalues λ that satisfy

Ax⃗ = λx⃗ = λ(Ix⃗) = (λI)x⃗

for some nontrivial eigenvector x⃗ is equivalent to finding nonzero solutions
for the matrix equation

(A− λI)x⃗ = 0⃗.

(a) If λ is an eigenvalue, and T is the transformation with standard matrix
A− λI, which of these must contain a non-zero vector?

A. The kernel of T
B. The image of T

C. The domain of T
D. The codomain of T

(b) Therefore, what can we conclude?

A. A is invertible
B. A is not invertible

C. A− λI is invertible
D. A− λI is not invertible

(c) And what else?

A. detA = 0

B. detA = 1

C. det(A− λI) = 0

D. det(A− λI) = 1



Eigenvalues and Characteristic Polynomials (GT3)

Fact 5.3.6 The eigenvalues λ for a matrix A are exactly the values that make
A− λI non-invertible.

Thus the eigenvalues λ for a matrix A are the solutions to the equation

det(A− λI) = 0.



Eigenvalues and Characteristic Polynomials (GT3)

Definition 5.3.7 The expression det(A−λI) is called characteristic poly-
nomial of A.

For example, when A =

[
1 2
5 4

]
, we have

A− λI =

[
1 2
5 4

]
−

[
λ 0
0 λ

]
=

[
1− λ 2
5 4− λ

]
.

Thus the characteristic polynomial of A is

det
[
1− λ 2
5 4− λ

]
= (1− λ)(4− λ)− (2)(5) = λ2 − 5λ− 6

and its eigenvalues are the solutions −1, 6 to λ2 − 5λ− 6 = 0. ♢



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.8 Let A =

[
5 2
−3 −2

]
.

(a) Compute det(A− λI) to determine the characteristic polynomial of A.

(b) Set this characteristic polynomial equal to zero and factor to determine
the eigenvalues of A.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.9 Find all the eigenvalues for the matrix A =

[
3 −3
2 −4

]
.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.10 Find all the eigenvalues for the matrix A =

[
1 −4
0 5

]
.



Eigenvalues and Characteristic Polynomials (GT3)

Activity 5.3.11 Find all the eigenvalues for the matrix A =

 3 −3 1
0 −4 2
0 0 7

.



Eigenvectors and Eigenspaces (GT4)

5.4 Eigenvectors and Eigenspaces (GT4)

Learning Outcomes
• Find a basis for the eigenspace of a 4×4 matrix associated with a given

eigenvalue.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.1 It’s possible to show that −2 is an eigenvalue for −1 4 −2
2 −7 9
3 0 4

.

Compute the kernel of the transformation with standard matrix

A− (−2)I =

 ? 4 −2
2 ? 9
3 0 ?


to find all the eigenvectors x⃗ such that Ax⃗ = −2x⃗.



Eigenvectors and Eigenspaces (GT4)

Definition 5.4.2 Since the kernel of a linear map is a subspace of Rn, and
the kernel obtained from A−λI contains all the eigenvectors associated with
λ, we call this kernel the eigenspace of A associated with λ. ♢



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.3 Find a basis for the eigenspace for the matrix

 0 0 3
1 0 −1
0 1 3


associated with the eigenvalue 3.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.4 Find a basis for the eigenspace for the matrix
5 −2 0 4
6 −2 1 5
−2 1 2 −3
4 5 −3 6

 associated with the eigenvalue 1.



Eigenvectors and Eigenspaces (GT4)

Activity 5.4.5 Find a basis for the eigenspace for the matrix


4 3 0 0
3 3 0 0
0 0 2 5
0 0 0 2


associated with the eigenvalue 2.



Appendix A

Applications

A.1 Civil Engineering: Trusses and Struts
Definition A.1.1 In engineering, a truss is a structure designed from several
beams of material called struts, assembled to behave as a single object.

Figure 35 A simple truss

323



Civil Engineering: Trusses and Struts

C

A

D

B

E

Figure 36 A simple truss
♢



Civil Engineering: Trusses and Struts

Activity A.1.2 Consider the representation of a simple truss pictured be-
low. All of the seven struts are of equal length, affixed to two anchor points
applying a normal force to nodes C and E, and with a 10000N load applied
to the node given by D.

C

A

D

B

E

Figure 37 A simple truss
Which of the following must hold for the truss to be stable?

1. All of the struts will experience compression.

2. All of the struts will experience tension.

3. Some of the struts will be compressed, but others will be tensioned.



Civil Engineering: Trusses and Struts

Observation A.1.3 Since the forces must balance at each node for the truss
to be stable, some of the struts will be compressed, while others will be
tensioned.

C

A

D

B

E

Figure 38 Completed truss
By finding vector equations that must hold at each node, we may deter-

mine many of the forces at play.



Civil Engineering: Trusses and Struts

Remark A.1.4 For example, at the bottom left node there are 3 forces
acting.

C

A

D

B

E

Figure 39 Truss with forces

Let F⃗CA be the force on C given by the compression/tension of the strut
CA, let F⃗CD be defined similarly, and let N⃗C be the normal force of the anchor
point on C.

For the truss to be stable, we must have:

F⃗CA + F⃗CD + N⃗C = 0⃗



Civil Engineering: Trusses and Struts

Activity A.1.5 Using the conventions of the previous remark, and where L⃗
represents the load vector on node D, find four more vector equations that
must be satisfied for each of the other four nodes of the truss.

C

A

D

B

E

Figure 40 A simple truss

A : ?

B : ?

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : ?

E : ?



Civil Engineering: Trusses and Struts

Remark A.1.6 The five vector equations may be written as follows.

A : F⃗AC + F⃗AD + F⃗AB = 0⃗

B : F⃗BA + F⃗BD + F⃗BE = 0⃗

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : F⃗DC + F⃗DA + F⃗DB + F⃗DE + L⃗ = 0⃗

E : F⃗EB + F⃗ED + N⃗E = 0⃗



Civil Engineering: Trusses and Struts

Observation A.1.7 Each vector has a vertical and horizontal component,
so it may be treated as a vector in R2. Note that F⃗CA must have the same
magnitude (but opposite direction) as F⃗AC .

F⃗CA = x

[
cos(60◦)
sin(60◦)

]
= x

[
1/2√
3/2

]

F⃗AC = x

[
cos(−120◦)
sin(−120◦)

]
= x

[
−1/2

−
√
3/2

]



Civil Engineering: Trusses and Struts

Activity A.1.8 To write a linear system that models the truss under con-
sideration with constant load 10000 newtons, how many scalar variables will
be required?

• 7: 5 from the nodes, 2 from the anchors

• 9: 7 from the struts, 2 from the anchors

• 11: 7 from the struts, 4 from the anchors

• 12: 7 from the struts, 4 from the anchors, 1 from the load

• 13: 5 from the nodes, 7 from the struts, 1 from the load

C

A

D

B

E

Figure 41 A simple truss



Civil Engineering: Trusses and Struts

Observation A.1.9 Since the angles for each strut are known, one variable
may be used to represent each.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 42 Variables for the truss
For example:

F⃗AB = −F⃗BA = x1

[
cos(0)
sin(0)

]
= x1

[
1
0

]

F⃗BE = −F⃗EB = x5

[
cos(−60◦)
sin(−60◦)

]
= x5

[
1/2

−
√
3/2

]



Civil Engineering: Trusses and Struts

Observation A.1.10 Since the angle of the normal forces for each anchor
point are unknown, two variables may be used to represent each.

C

A

D

B

E

Figure 43 Truss with normal forces

N⃗C =

[
y1
y2

]
N⃗D =

[
z1
z2

]
The load vector is constant.

L⃗ =

[
0

−10000

]



Civil Engineering: Trusses and Struts

Remark A.1.11 Each of the five vector equations found previously repre-
sent two linear equations: one for the horizontal component and one for the
vertical.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 44 Variables for the truss

C : F⃗CA + F⃗CD + N⃗C = 0⃗

⇔ x2

[
cos(60◦)
sin(60◦)

]
+ x6

[
cos(0◦)
sin(0◦)

]
+

[
y1
y2

]
=

[
0
0

]
Using the approximation

√
3/2 ≈ 0.866, we have

⇔ x2

[
0.5
0.866

]
+ x6

[
1
0

]
+ y1

[
1
0

]
+ y2

[
0
1

]
=

[
0
0

]
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Activity A.1.12 Expand the vector equation given below using sine and
cosine of appropriate angles, then compute each component (approximating√
3/2 ≈ 0.866).

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 45 Variables for the truss

D : F⃗DA + F⃗DB + F⃗DC + F⃗DE = −L⃗

⇔ x3

[
cos( ? )
sin( ? )

]
+ x4

[
cos( ? )
sin( ? )

]
+ x6

[
cos( ? )
sin( ? )

]
+ x7

[
cos( ? )
sin( ? )

]
=

[
?
?

]
⇔ x3

[
?
?

]
+ x4

[
?
?

]
+ x6

[
?
?

]
+ x7

[
?
?

]
=

[
?
?

]



Civil Engineering: Trusses and Struts

Observation A.1.13 The full augmented matrix given by the ten equations
in this linear system is given below, where the elevent columns correspond
to x1, . . . , x7, y1, y2, z1, z2, and the ten rows correspond to the horizontal and
vertical components of the forces acting at A, . . . , E.

1 −0.5 0.5 0 0 0 0 0 0 0 0 0
0 −0.866 −0.866 0 0 0 0 0 0 0 0 0
−1 0 0 −0.5 0.5 0 0 0 0 0 0 0
0 0 0 −0.866 −0.866 0 0 0 0 0 0 0
0 0.5 0 0 0 1 0 1 0 0 0 0
0 0.866 0 0 0 0 0 0 1 0 0 0
0 0 −0.5 0.5 0 −1 1 0 0 0 0 0
0 0 0.866 0.866 0 0 0 0 0 0 0 10000
0 0 0 0 −0.5 0 −1 0 0 1 0 0
0 0 0 0 0.866 0 0 0 0 0 1 0





Civil Engineering: Trusses and Struts

Observation A.1.14 This matrix row-reduces to the following.

∼



1 0 0 0 0 0 0 0 0 0 0 −5773.7
0 1 0 0 0 0 0 0 0 0 0 −5773.7
0 0 1 0 0 0 0 0 0 0 0 5773.7
0 0 0 1 0 0 0 0 0 0 0 5773.7
0 0 0 0 1 0 0 0 0 0 0 −5773.7
0 0 0 0 0 1 0 0 0 −1 0 2886.8
0 0 0 0 0 0 1 0 0 −1 0 2886.8
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 5000
0 0 0 0 0 0 0 0 0 0 1 5000





Civil Engineering: Trusses and Struts

Observation A.1.15 Thus we know the truss must satisfy the following
conditions.

x1 = x2 = x5 = −5882.4

x3 = x4 = 5882.4

x6 = x7 = 2886.8 + z1
y1 = −z1

y2 = z2 = 5000

In particular, the negative x1, x2, x5 represent tension (forces pointing into
the nodes), and the postive x3, x4 represent compression (forces pointing out
of the nodes). The vertical normal forces y2 + z2 counteract the 10000 load.

C

A

D

B

E

Figure 46 Completed truss



Computer Science: PageRank

A.2 Computer Science: PageRank
Activity A.2.1 The $978,000,000,000 Problem.

In the picture below, each circle represents a webpage, and each arrow
represents a link from one page to another.

1

2 3

4 5 6

7

Figure 47 A seven-webpage network
Based on how these pages link to each other, write a list of the 7 webpages

in order from most important to least important.



Computer Science: PageRank

Observation A.2.2 The $978,000,000,000 Idea. Links are endorse-
ments. That is:

1. A webpage is important if it is linked to (endorsed) by important pages.

2. A webpage distributes its importance equally among all the pages it
links to (endorses).



Computer Science: PageRank

Example A.2.3 Consider this small network with only three pages. Let
x1, x2, x3 be the importance of the three pages respectively.

1

2 3
Figure 48 A three-webpage network

1. x1 splits its endorsement in half between x2 and x3

2. x2 sends all of its endorsement to x1

3. x3 sends all of its endorsement to x2.

This corresponds to the page rank system:

x2 =x1
1

2
x1 +x3 =x2

1

2
x1 =x3

□



Computer Science: PageRank

Observation A.2.4

1

2 3
Figure 49 A three-webpage network

x2 =x1
1

2
x1 +x3 =x2

1

2
x1 =x3

 0 1 0
1
2 0 1
1
2 0 0

 x1
x2
x3

 =

 x1
x2
x3



By writing this linear system in terms of matrix multiplication, we obtain

the page rank matrix A =

 0 1 0
1
2 0 1
1
2 0 0

 and page rank vector x⃗ =

 x1
x2
x3

.

Thus, computing the importance of pages on a network is equivalent to
solving the matrix equation Ax⃗ = 1x⃗.



Computer Science: PageRank

Activity A.2.5 Thus, our $978,000,000,000 problem is what kind of prob-
lem?  0 1 0

1
2 0 1

2
1
2 0 0

 x1
x2
x3

 = 1

 x1
x2
x3


A. An antiderivative problem

B. A bijection problem

C. A cofactoring problem

D. A determinant problem

E. An eigenvector problem



Computer Science: PageRank

Activity A.2.6 Find a page rank vector x⃗ satisfying Ax⃗ = 1x⃗ for the follow-
ing network’s page rank matrix A.

That is, find the eigenspace associated with λ = 1 for the matrix A, and
choose a vector from that eigenspace.

1

2 3
Figure 50 A three-webpage net-
work

A =

 0 1 0
1
2 0 1
1
2 0 0





Computer Science: PageRank

Observation A.2.7 Row-reducing A−I =

 −1 1 0
1
2 −1 1
1
2 0 −1

 ∼

 1 0 −2
0 1 −2
0 0 0


yields the basic eigenvector

 2
2
1

.

Therefore, we may conclude that pages 1 and 2 are equally important,
and both pages are twice as important as page 3.



Computer Science: PageRank

Activity A.2.8 Compute the 7 × 7 page rank matrix for the following net-
work.

1

2 3

4 5 6

7

Figure 51 A seven-webpage network
For example, since website 1 distributes its endorsement equally between

2 and 4, the first column is



0
1
2
0
1
2
0
0
0


.



Computer Science: PageRank

Activity A.2.9 Find a page rank vector for the given page rank matrix.

A =



0 1
2 0 0 0 0 0

1
2 0 0 1 0 0 1

2
0 1

2 0 0 0 0 0
1
2 0 1

2 0 0 0 1
2

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 1
2 0 1

2
1
2 0



1

2 3

4 5 6

7

Figure 52 A seven-webpage network
Which webpage is most important?



Computer Science: PageRank

Observation A.2.10 Since a page rank vector for the network is given by
x⃗, it’s reasonable to consider page 2 as the most important page.

x⃗ =



2
4
2
2.5
0
0
1


Based upon this page rank vector, here is a complete ranking of all seven

pages from most important to least important:

2, 4, 1, 3, 7, 5, 6

1

2 3

4 5 6

7

Figure 53 A seven-webpage network
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Activity A.2.11 Given the following diagram, use a page rank vector to
rank the pages 1 through 7 in order from most important to least important.

1 2 3 4

5 6 7

Figure 54 Another seven-webpage network



Geology: Phases and Components

A.3 Geology: Phases and Components
Definition A.3.1 In geology, a phase is any physically separable material
in the system, such as various minerals or liquids.

A component is a chemical compound necessary to make up the phases;
these are usually oxides such as Calcium Oxide (CaO) or Silicon Dioxide
(SiO2).

In a typical application, a geologist knows how to build each phase from
the components, and is interested in determining reactions among the differ-
ent phases. ♢



Geology: Phases and Components

Observation A.3.2 Consider the 3 components

c⃗1 = CaO c⃗2 = MgO and c⃗3 = SiO2

and the 5 phases:

p⃗1 = Ca3MgSi2O8 p⃗2 = CaMgSiO4 p⃗3 = CaSiO3

p⃗4 = CaMgSi2O6 p⃗5 = Ca2MgSi2O7

Geologists already know (or can easily deduce) that

p⃗1 = 3c⃗1 + c⃗2 + 2c⃗3 p⃗2 = c⃗1 + c⃗2 + c⃗3 p⃗3 = c⃗1 + 0c⃗2 + c⃗3
p⃗4 = c⃗1 + c⃗2 + 2c⃗3 p⃗5 = 2c⃗1 + c⃗2 + 2c⃗3

since, for example:

c⃗1 + c⃗3 = CaO + SiO2 = CaSiO3 = p⃗3



Geology: Phases and Components

Activity A.3.3 To study this vector space, each of the three components
c⃗1, c⃗2, c⃗3 may be considered as the three components of a Euclidean vector.

p⃗1 =

 3
1
2

 , p⃗2 =

 1
1
1

 , p⃗3 =

 1
0
1

 , p⃗4 =

 1
1
2

 , p⃗5 =

 2
1
2

 .

Determine if the set of phases is linearly dependent or linearly indepen-
dent.



Geology: Phases and Components

Activity A.3.4 Geologists are interested in knowing all the possible chemical
reactions among the 5 phases:

p⃗1 = Ca3MgSi2O8 =

 3
1
2

 p⃗2 = CaMgSiO4 =

 1
1
1

 p⃗3 = CaSiO3 =

 1
0
1



p⃗4 = CaMgSi2O6 =

 1
1
2

 p⃗5 = Ca2MgSi2O7 =

 2
1
2

 .

That is, they want to find numbers x1, x2, x3, x4, x5 such that

x1p⃗1 + x2p⃗2 + x3p⃗3 + x4p⃗4 + x5p⃗5 = 0.

(a) Set up a system of equations equivalent to this vector equation.

(b) Find a basis for its solution space.

(c) Interpret each basis vector as a vector equation and a chemical equation.
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Activity A.3.5 We found two basis vectors


1
−2
−2
1
0

 and


0
−1
−1
0
1

, correspond-

ing to the vector and chemical equations

2p⃗2 + 2p⃗3 = p⃗1 + p⃗4 2CaMgSiO4 + 2CaSiO3 = Ca3MgSi2O8 + CaMgSi2O6

p⃗2 + p⃗3 = p⃗5 CaMgSiO4 + CaSiO3 = Ca2MgSi2O7

Combine the basis vectors to produce a chemical equation among the five
phases that does not involve p⃗2 = CaMgSiO4.
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