Skip to main content

Section 2.6 Identifying a Basis (V6)

Definition 2.6.1.

A basis is a linearly independent set that spans a vector space.

The standard basis of \(\IR^n\) is the set \(\{\vec{e}_1, \ldots, \vec{e}_n\}\) where

\begin{align*} \vec{e}_1 &= \left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{array}\right] & \vec{e}_2 &= \left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{array}\right] & \cdots & & \vec{e}_n = \left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]\text{.} \end{align*}

For \(\IR^3\text{,}\) these are the vectors \(\vec e_1=\hat\imath=\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right], \vec e_2=\hat\jmath=\left[\begin{array}{c}0 \\ 1 \\ 0\end{array}\right],\) and \(\vec e_3=\hat k=\left[\begin{array}{c}0 \\ 0 \\ 1\end{array}\right] \text{.}\)

Observation 2.6.2.

A basis may be thought of as a collection of building blocks for a vector space, since every vector in the space can be expressed as a unique linear combination of basis vectors.

For example, in many calculus courses, vectors in \(\IR^3\) are often expressed in their component form

\begin{equation*} (3,-2,4)=\left[\begin{array}{c}3 \\ -2 \\ 4\end{array}\right] \end{equation*}

or in their standard basic vector form

\begin{equation*} 3\vec e_1-2\vec e_2+4\vec e_3 = 3\hat\imath-2\hat\jmath+4\hat k . \end{equation*}

Since every vector in \(\IR^3\) can be uniquely described as a linear combination of the vectors in \(\setList{\vec e_1,\vec e_2,\vec e_3}\text{,}\) this set is indeed a basis.

Activity 2.6.3.

Label each of the sets \(A,B,C,D,E\) as

  • SPANS \(\IR^4\) or DOES NOT SPAN \(\IR^4\)

  • LINEARLY INDEPENDENT or LINEARLY DEPENDENT

  • BASIS FOR \(\IR^4\) or NOT A BASIS FOR \(\IR^4\)

by finding \(\RREF\) for their corresponding matrices.

\begin{align*} A&=\left\{ \left[\begin{array}{c}1\\0\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\0\\1\\0\end{array}\right], \left[\begin{array}{c}0\\0\\0\\1\end{array}\right] \right\} & B&=\left\{ \left[\begin{array}{c}2\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}2\\0\\0\\3\end{array}\right], \left[\begin{array}{c}4\\3\\0\\2\end{array}\right], \left[\begin{array}{c}-3\\0\\1\\3\end{array}\right] \right\}\\ C&=\left\{ \left[\begin{array}{c}2\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}2\\0\\0\\3\end{array}\right], \left[\begin{array}{c}3\\13\\7\\16\end{array}\right], \left[\begin{array}{c}-1\\10\\7\\14\end{array}\right], \left[\begin{array}{c}4\\3\\0\\2\end{array}\right] \right\} & D&=\left\{ \left[\begin{array}{c}2\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}4\\3\\0\\2\end{array}\right], \left[\begin{array}{c}-3\\0\\1\\3\end{array}\right], \left[\begin{array}{c}3\\6\\1\\5\end{array}\right] \right\}\\ E&=\left\{ \left[\begin{array}{c}5\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}-2\\1\\0\\3\end{array}\right], \left[\begin{array}{c}4\\5\\1\\3\end{array}\right] \right\} \end{align*}

Activity 2.6.4.

If \(\{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}\) is a basis for \(\IR^4\text{,}\) that means \(\RREF[\vec v_1\,\vec v_2\,\vec v_3\,\vec v_4]\) doesn't have a non-pivot column, and doesn't have a row of zeros. What is \(\RREF[\vec v_1\,\vec v_2\,\vec v_3\,\vec v_4]\text{?}\)

\begin{equation*} \RREF[\vec v_1\,\vec v_2\,\vec v_3\,\vec v_4] = \left[\begin{array}{cccc} \unknown & \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown & \unknown \\ \end{array}\right] \end{equation*}

Subsection 2.6.1 Videos

Figure 2.6.6. Video: Verifying that a set of vectors is a basis of a vector space

Exercises 2.6.2 Exercises

Exercises available at checkit.clontz.org 1 .

https://checkit.clontz.org/#/banks/tbil-la/V6/