Skip to main content ☰ Contents You! < Prev ^ Up Next > \(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 9.4 Taylor Series (PS4)
Learning Outcomes
Subsection 9.4.1 Activities
Activity 9.4.1 .
The following tasks will help us find a mechanism to produce a power series given information about its derivatives.
(a)
Find the 2nd derivative of \(x^2\text{.}\)
\(\displaystyle 2x\)
\(\displaystyle 2\)
\(\displaystyle 4x\)
\(\displaystyle 4\)
(b)
Find the 3rd derivative of \(x^3\text{.}\)
\(\displaystyle 2\)
\(\displaystyle 3x\)
\(\displaystyle 6\)
\(\displaystyle 12x\)
(c)
Find the 4th derivative of \(x^4\text{.}\)
\(\displaystyle 18\)
\(\displaystyle 24\)
\(\displaystyle 32\)
\(\displaystyle 64\)
(d)
Based on these results, which of the following should always equal the \(n\) th derivative of \(x^n\) with respect to \(x\text{?}\)
\(\displaystyle n\)
\(\displaystyle n^2\)
\(\displaystyle n!\)
\(\displaystyle n^n\)
Activity 9.4.2 .
Let’s use derivatives to rediscover the sequence \(a_n\) which gives a power series representation for \(e^x\text{.}\)
(a)
Let’s say that
\begin{equation*}
e^x=\sum_{n=0}^\infty a_nx^n=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4\dots\text{.}
\end{equation*}
What must \(a_0\) be to satisfy \(e^0=1\text{?}\)
(b)
Then,
\begin{equation*}
\frac{d}{dx}[e^x]=e^x=a_1+2a_2x+3a_3x^2+4a_4x^3\dots\text{.}
\end{equation*}
What must \(a_1\) be to also satisfy \(e^0=1\text{?}\)
(c)
Then,
\begin{equation*}
\frac{d^2}{dx^2}[e^x]=e^x=2a_2+6a_3x+12a_4x^2+\dots\text{.}
\end{equation*}
What must \(a_2\) be to also satisfy \(e^0=1\text{?}\)
(d)
Then,
\begin{equation*}
\frac{d^3}{dx^3}[e^x]=e^x=6a_3+24a_4x+\dots\text{.}
\end{equation*}
What must \(a_3\) be to also satisfy \(e^0=1\text{?}\)
(e)
So this \(6a_3\) term was obtained from the fact that the \(3\) rd derivative of \(x^3\) is \(3!=6\text{.}\)
So finally, we may skip ahead to the \(n\) th derivative:
\begin{equation*}
\frac{d^n}{dx^n}[e^x]=e^x=n!\cdot a_n+(n+1)!\cdot a_{n+1}\cdot x+\dots\text{.}
\end{equation*}
What must \(a_n\) be to also satisfy \(e^0=1\text{?}\)
(f)
This reveals the power series we previously found for \(e^x\text{:}\)
\begin{equation*}
e^x=\sum_{n=0}^\infty a_nx^n=\sum_{n=0}^\infty \frac{1}{n!}x^n\text{.}
\end{equation*}
So in general, if \(f(x)=a_0+a_1x+a_2x^2+\dots\text{,}\) then
\begin{equation*}
\frac{d^n}{dx^n}[f(x)]=f^{(n)}(x)=n!\cdot a_n+(n+1)!\cdot a_{n+1}\cdot x+\dots\text{.}
\end{equation*}
What must \(a_n\) be to produce the correct value for \(f^{(n)}(0)\text{?}\)
Fact 9.4.1 .
If \(f(x)\) can be written as a power series, then there is a real number \(c\) such that
\begin{align*}
f(x)&=\sum_{n=0}^\infty \frac{f^{(n)}(c)}{n!}(x-c)^n\\
&=f(c)+f^\prime(c)(x-c)+\frac{f^{\prime\prime}(c)}{2!}(x-c)^2+\frac{f^{(3)}(c)}{3!}(x-c)^3+\ldots
\end{align*}
on some interval centered at \(x=c\text{.}\)
In fact, the functions that can be represented as power series are exactly those functions which are infinitely differentiable on some open interval.
Definition 9.4.2 .
The Taylor series generated by \(f(x)\) and centered at \(x=c\) is given by
\begin{align*}
f(x)&=\sum_{n=0}^\infty \frac{f^{(n)}(c)}{n!}(x-c)^n\\
&=f(c)+f^\prime(c)(x-c)+\frac{f^{\prime\prime}(c)}{2!}(x-c)^2+\frac{f^{(3)}(c)}{3!}(x-c)^3+\ldots
\end{align*}
with an interval of convergence determinable by series convergence rules.
When \(c=0\text{,}\)
\begin{align*}
f(x)&=\sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!}x^n\\
&=f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{(3)}(0)}{3!}x^3+\ldots
\end{align*}
is called the Maclaurin series generated by \(f\text{.}\)
Activity 9.4.3 .
Observe that \(f(x)=\sin(x)\) is a function such that:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c|c}
f(0) & f'(0) & f''(0) & f^{(3)}(0) & f^{(4)}(0) & f^{(5)}(0) & f^{(6)}(0) & f^{(7)}(0) \\
\hline
\sin(0) & \cos(0) & -\sin(0) & -\cos(0) & \sin(0) & \cos(0) & -\sin(0) & -\cos(0) \\
\hline
0 & 1 & 0 & -1 & 0 & 1 & 0 & -1
\end{array}
\end{equation*}
(a)
Given the zeros appearing for every even derivative above, which of these is a valid simplification of the Maclarin series \(\displaystyle\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n\) for \(\sin(x)\text{?}\)
\(\displaystyle \sum_{n=1}^\infty\frac{f^{(n)}(0)}{n!}x^n\)
\(\displaystyle \sum_{2n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n\)
\(\displaystyle \sum_{n=0}^\infty\frac{f^{(2n)}(0)}{(2n)!}x^{2n}\)
\(\displaystyle \sum_{n=0}^\infty\frac{f^{(2n+1)}(0)}{(2n+1)!}x^{2n+1}\)
(b)
Now consider the following consolidated chart:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c|c}
f^{(1)}(0) & f^{(3)}(0) &f^{(5)}(0) & f^{(7)}(0) \\
\hline
\cos(0) & -\cos(0) & \cos(0) & -\cos(0) \\
\hline
1 & -1 & 1 & -1
\end{array}
\end{equation*}
Which formula yields these alternating \(1\) s and \(-1\) s appearing for \(f^{(2n+1)}(0)\text{?}\)
\(\displaystyle f^{(2n+1)}(0)=(-1)^n\)
\(\displaystyle f^{(2n+1)}(0)=(-1)^{n+1}\)
\(\displaystyle f^{(2n+1)}(0)=(-1)^{2n}\)
\(\displaystyle f^{(2n+1)}(0)=(-1)^{2n+1}\)
Fact 9.4.3 .
The power series we’ve introduced for each of the following functions are in fact their Maclaurin series (Taylor series centered at \(0\) ).
\begin{align*}
\frac{1}{1-x} = \sum_{n=0}^\infty \frac{n!}{n!}x^n\amp= 1+x+x^2+x^3+\dots\\
e^x = \sum_{n=0}^\infty \frac{1}{n!}x^n\amp= 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots\\
\cos(x)= \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}x^{2n}\amp =1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{x^6}{720}+\dots\\
\sin(x)=\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1}\amp =x-\frac{x^3}{6}+\frac{x^5}{120}-\frac{x^7}{5040}+\dots
\end{align*}
Definition 9.4.4 .
For a function \(f(x)\) with a Taylor series centered at \(x=c\text{,}\)
\begin{align*}
f(x) \amp\approx T_k(x)\\
\amp = \sum_{n=0}^k \frac{f^{(n)}(c)}{n!}(x-c)^n \\
\amp = f(c)+f^\prime(c)(x-c)+\frac{f^{\prime\prime}(c)}{2!}(x-c)^2+
\ldots+\frac{f^{(k)}(c)}{k!}(x-c)^k
\end{align*}
where \(T_k(x)\) is called the \(k^{th}\) degree Taylor polynomial generated by \(f\) and centered at \(x=c\text{.}\)
The \(k^{th}\) degree Taylor polynomial can be seen as the “best” polynomial of degree \(k\) or less for approximating \(f(x)\) for values close to \(x=c\text{.}\) Note that the \(1^{st}\) degree Taylor polynomial is also known as the linearization of \(f\text{.}\)
Activity 9.4.4 .
Let \(f(x)\) be a function such that:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c}
f(4) & f'(4) & f''(4) & f'''(4) & f^{(4)}(4) & f^{(5)}(4) & f^{(6)}(4) \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{equation*}
(a)
Find a Taylor polynomial for \(f(x)\) centered at \(x=4\) of degree \(3\text{.}\)
(b)
Using the table above, find a general closed form for \(f^{(n)}(4)\text{.}\)
(c)
Use (b) to find a Taylor series for \(f(x)\) centered at \(x=4\text{.}\)
Activity 9.4.5 .
Let \(f(x)\) be a function such that:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c}
f(-2) & f'(-2) & f''(-2) & f'''(-2) & f^{(4)}(-2) & f^{(5)}(-2) & f^{(6)}(-2) \\
\hline
0 & 2 & -16 & 54 & -128 & 250 & -432
\end{array}
\end{equation*}
(a)
Find a Taylor polynomial for \(f(x)\) centered at \(x=-2\) of degree \(3\text{.}\)
(b)
Using the table above, find a general closed form for \(f^{(n)}(-2)\text{.}\)
(c)
Use (b) to find a Taylor series for \(f(x)\) centered at \(x=-2\text{.}\)
Definition 9.4.6 . Euler’s Identity.
For any real number \(\theta\text{,}\)
\begin{align*}
e^{i\theta} & = 1+\displaystyle\frac{i\theta}{1!}+\displaystyle\frac{(i\theta)^2}{2!}+\displaystyle\frac{(i\theta)^3}{3!}+\displaystyle\frac{(i\theta)^4}{4!}+\displaystyle\frac{(i\theta)^5}{5!}+\displaystyle\frac{(i\theta)^6}{6!}+\displaystyle\frac{(i\theta)^7}{7!}+\displaystyle\frac{(i\theta)^8}{8!}+\ldots\\
& = 1+i\theta-\displaystyle\frac{\theta^2}{2!}-\displaystyle\frac{i\theta^3}{3!}+\displaystyle\frac{\theta^4}{4!}+\displaystyle\frac{i\theta^5}{5!}-\displaystyle\frac{\theta^6}{6!}-\displaystyle\frac{i\theta^7}{7!}+\displaystyle\frac{\theta^8}{8!}+\ldots\\
& = \left(1-\displaystyle\frac{\theta^2}{2!}+\displaystyle\frac{\theta^4}{4!}-\displaystyle\frac{\theta^6}{6!}+\ldots\right)+i\left(\theta-\displaystyle\frac{\theta^3}{3!}+\displaystyle\frac{\theta^5}{5!}-\displaystyle\frac{\theta^7}{7!}+\ldots\right)\\
& = \cos(\theta)+i\sin(\theta).
\end{align*}
Activity 9.4.6 .
Use Euler’s identity to evaluate \(e^{i\pi}\text{.}\)
Subsection 9.4.2 Videos
Figure 184. Video: Determine a Taylor or Maclaurin series for a function