Note that \(\{A_n\}=A_0, A_1, A_2, \ldots\) is itself a sequence called the partial sum sequence.
Activity8.3.3.
Let \(a_n=\frac{2}{3^n}.\) Find the following partial sums:
\(A_0\text{.}\)
\(A_1\text{.}\)
\(A_2\text{.}\)
\(A_3\text{.}\)
\(A_{100}\text{.}\)
Activity8.3.4.
Consider the sequence \(a_n=\frac{2}{3^n}.\) What is the best way to find the 100th partial sum \(A_{100}\text{?}\)
Sum the first 101 terms of the sequence \(\{a_n\}\text{.}\)
Find a closed form for the partial sum sequence \(\{A_n\}\text{.}\)
Activity8.3.5.
Expand the following polynomial products, and then reduce to as few summands as possible.
\((1-x)(1+x+x^2)\text{.}\)
\((1-x)(1+x+x^2+x^3)\text{.}\)
\((1-x)(1+x+x^2+x^3+x^4)\text{.}\)
\((1-x)(1+x+x^2+\cdots+x^n)\text{,}\) where \(n\) is any nonnegative integer.
Activity8.3.6.
Suppose \(\displaystyle S_5=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}.\) Without actually computing this sum, which of the following is equal to \(\left(1-\frac{1}{2}\right)S_5\text{?}\)
Recall from Activity 8.3.3 that \(\displaystyle A_{100}=2+\frac{2}{3}+\frac{2}{3^2}+\frac{2}{3^3}+\frac{2}{3^4}+\cdots+\frac{2}{3^{100}}=2\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\cdots+\frac{1}{3^{100}}\right).\)
(a)
Which of the following is equal to \(\displaystyle\left(1-\frac{1}{3}\right)A_{100}\text{?}\)
Based on your previous choice, write out an expression for \(A_{100}\text{.}\)
Activity8.3.8.
Suppose that \(\displaystyle \{b_n\}_{n=0}^\infty=\{(-2)^n\}_{n=0}^\infty=\{1,-2,4,-8,\ldots\}\text{.}\) Let \(B_n=\displaystyle\sum_{i=0}^n b_i\) be the \(n\)th partial sum of \(\{b_n\}\text{.}\)
(a)
Find simple expressions for the following:
\((1-(-2))B_{10}\text{.}\)
\((1-(-2))B_{30}\text{.}\)
\((1-(-2))B_{n}\text{.}\) Choose from the following:
\(1+(-2)^n\text{.}\)
\(1-(-2)^n\text{.}\)
\(1+(-2)^{n+1}\text{.}\)
\(1-(-2)^{n+1}\text{.}\)
\(1-2^n\text{.}\)
(b)
Based on your previous answers, solve for the following:
Find the closed form for the \(n\)th partial sum for the geometric sequence \(A_n=\displaystyle\sum_{i=0}^n a_i=\displaystyle\sum_{i=0}^n \left(-\frac{2}{3}\right)^n\text{.}\)
Find the closed form for the \(n\)th partial sum for the geometric sequence \(B_n=\displaystyle\sum_{i=0}^n b_i=\displaystyle\sum_{i=0}^n 2\cdot\left(-1\right)^n\text{.}\)
\(\displaystyle 2^{n+1}\text{.}\)
\(\displaystyle 1-(-1)^{n+1}\text{.}\)
\(\displaystyle 1+(-1)^{n}\text{.}\)
\(\displaystyle 2(1+(-1)^{n})\text{.}\)
\(\displaystyle 2(1-(-1)^{n+1})\text{.}\)
(c)
Find the closed form for the \(n\)th partial sum for the geometric sequence \(C_n=\displaystyle\sum_{i=0}^n c_i=\displaystyle\sum_{i=0}^n -3\cdot \left(1.2\right)^n\text{.}\)
Activity8.3.10.
Given the closed forms you found in Activity 8.3.9, which of the following limits are defined? If defined, what is the limit?
\(\displaystyle\lim_{n\to\infty}A_n\text{.}\)
\(\displaystyle\lim_{n\to\infty}B_n\text{.}\)
\(\displaystyle\lim_{n\to\infty}C_n\text{.}\)
Definition8.3.2.
Given a sequence \(a_n\text{,}\) we define the limit of the series
Let \(\displaystyle\{a_n\}_{n=1}^\infty=\left\{\frac{1}{n}-\frac{1}{n+1}\right\}=1-\frac{1}{2}, \frac{1}{2}-\frac{1}{3}, \frac{1}{3}-\frac{1}{4},\ldots\text{.}\) Let \(\displaystyle A_n=\sum_{i=1}^na_i=\sum_{i=1}^n \left(\frac{1}{i}-\frac{1}{i+1} \right)\text{.}\)
Which of the following is the best strategy for evaluating \(\displaystyle A_{4}=\left(1-\frac{1}{2} \right)+\left(\frac{1}{2}-\frac{1}{3} \right)+\left(\frac{1}{3}-\frac{1}{4} \right)+\left(\frac{1}{4}-\frac{1}{5} \right)\text{?}\)
Compute \(\displaystyle A_{4}=\left(1-\frac{1}{2} \right)+\left(\frac{1}{2}-\frac{1}{3} \right)+\left(\frac{1}{3}-\frac{1}{4} \right)+\left(\frac{1}{4}-\frac{1}{5} \right)=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\text{,}\) then evaluate the sum.
Rewrite \(\displaystyle A_{4}=\left(1-\frac{1}{2} \right)+\left(\frac{1}{2}-\frac{1}{3} \right)+\left(\frac{1}{3}-\frac{1}{4} \right)+\left(\frac{1}{4}-\frac{1}{5} \right)=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)-\frac{1}{5}\text{,}\) then simplify.
Activity8.3.13.
Recall from Activity 8.3.12 that \(\displaystyle\{a_n\}_{n=1}^\infty=\left\{\frac{1}{n}-\frac{1}{n+1}\right\}\) and \(\displaystyle A_n=\sum_{i=1}^na_i=\sum_{i=1}^n \left(\frac{1}{i}-\frac{1}{i+1} \right)\text{.}\)
Compute the following partial sums:
\(A_3\text{.}\)
\(A_{10}\text{.}\)
\(A_{100}\text{.}\)
Activity8.3.14.
Recall from Activity 8.3.12 that \(\displaystyle\{a_n\}_{n=1}^\infty=\left\{\frac{1}{n}-\frac{1}{n+1}\right\}\) and \(\displaystyle A_n=\sum_{i=1}^na_i=\sum_{i=1}^n \left(\frac{1}{i}-\frac{1}{i+1} \right)\text{.}\)
Which of the following is equal to \(A_n\text{?}\)
\(n-\frac{1}{n+1}\text{.}\)
\(1-\frac{1}{n}\text{.}\)
\(1-\frac{1}{n+1}\text{.}\)
\(1-\frac{1}{i}\text{.}\)
\(1-\frac{1}{i+1}\text{.}\)
Definition8.3.3.
Given a sequence \(\{x_n\}_1^\infty\) and a sequence of the form \(\{s_n\}_1^\infty:=\{x_n-x_{n+1}\}_1^\infty\) we call the series \(S_n=\displaystyle\sum_{i=1}^n s_i=\sum_{i=1}^n(x_i-x_{i+1})\) to be a telescoping series.
Activity8.3.15.
Given a telescoping series \(S_n=\displaystyle\sum_{i=1}^n s_i=\sum_{i=1}^n(x_i-x_{i+1})\text{,}\) find:
\(S_2\text{.}\)
\(S_{10}\text{.}\)
Choose \(S_{n}\) from the following options:
\(\displaystyle x_1-x_n\)
\(\displaystyle x_1-x_{n+1}\)
\(\displaystyle x_1-x_{n-1}\)
\(\displaystyle x_1-x_n+1\)
\(\displaystyle x_1-x_n-1\)
Activity8.3.16.
For each of the following telescoping series, find the closed form for the \(n\)th partial sum.
Given the closed forms you found in Activity 8.3.16, determine which of the following telescoping series converge. If so, to what value does it converge?
Consider the partial sum sequence \(\displaystyle A_n=\left(-2\right)+\left(\frac{2}{3}\right)+\left(-\frac{2}{9}\right)+\cdots+\left(-2\cdot \left( -\frac{1}{3}\right)^n \right).\)
(a)
Find a closed form for \(A_n\text{.}\)
(b)
Does \(\{A_n\}\) converge? If so, to what value?
Activity8.3.19.
Consider the partial sum sequence \(\displaystyle B_n=\sum_{i=1}^n \left( \frac{1}{5 \, i + 2}-\frac{1}{5 \, i + 7} \right).\)