Skip to main content

Section 4.2 The Inverse of a Matrix (MX2)

Subsection 4.2.1 Class Activities

Activity 4.2.1.

Let \(A=\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]\text{.}\) Find a \(3 \times 3\) matrix \(B\) such that \(BA=A\text{,}\) that is,
\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] \end{equation*}
Check your guess using technology.

Definition 4.2.2.

The identity matrix \(I_n\) (or just \(I\) when \(n\) is obvious from context) is the \(n \times n\) matrix
\begin{equation*} I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right]. \end{equation*}
It has a \(1\) on each diagonal element and a \(0\) in every other position.

Activity 4.2.4.

Let \(T: \IR^n \rightarrow \IR^m\) be a linear map with standard matrix \(A\text{.}\) Sort the following items into three groups of statements: a group that means \(T\) is injective, a group that means \(T\) is surjective, and a group that means \(T\) is bijective.
  1. \(A\vec x=\vec b\) has a solution for all \(\vec b\in\IR^m\)
  2. \(A\vec x=\vec b\) has a unique solution for all \(\vec b\in\IR^m\)
  3. \(A\vec x=\vec 0\) has a unique solution.
  4. The columns of \(A\) span \(\IR^m\)
  5. The columns of \(A\) are linearly independent
  6. The columns of \(A\) are a basis of \(\IR^m\)
  7. Every column of \(\RREF(A)\) has a pivot
  8. Every row of \(\RREF(A)\) has a pivot
  9. \(m=n\) and \(\RREF(A)=I\)

Activity 4.2.5.

Let \(T: \IR^3 \rightarrow \IR^3\) be the linear transformation given by the standard matrix \(A=\left[\begin{array}{ccc} 2 & -1 & 0 \\ 2 & 1 & 4 \\ 1 & 1 & 3 \end{array}\right]\text{.}\)
Write an augmented matrix representing the system of equations given by \(T(\vec x)=\vec{0}\text{,}\) that is, \(A\vec x=\left[\begin{array}{c}0 \\ 0 \\ 0 \end{array}\right]\text{.}\) Then solve \(T(\vec x)=\vec{0}\) to find the kernel of \(T\text{.}\)

Definition 4.2.6.

Let \(T: \IR^n \rightarrow \IR^n\) be a linear map with standard matrix \(A\text{.}\)
  • If \(T\) is a bijection and \(\vec b\) is any \(\IR^n\) vector, then \(T(\vec x)=A\vec x=\vec b\) has a unique solution.
  • So we may define an inverse map \(T^{-1} : \IR^n \rightarrow \IR^n\) by setting \(T^{-1}(\vec b)\) to be this unique solution.
  • Let \(A^{-1}\) be the standard matrix for \(T^{-1}\text{.}\) We call \(A^{-1}\) the inverse matrix of \(A\text{,}\) so we also say that \(A\) is invertible.

Activity 4.2.7.

Let \(T: \IR^3 \rightarrow \IR^3\) be the linear transformation given by the standard matrix \(A=\left[\begin{array}{ccc} 2 & -1 & -6 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{array}\right]\text{.}\)
(a)
Write an augmented matrix representing the system of equations given by \(T(\vec x)=\vec{e}_1\text{,}\) that is, \(A\vec x=\left[\begin{array}{c}1 \\ 0 \\ 0 \end{array}\right]\text{.}\) Then solve \(T(\vec x)=\vec{e}_1\) to find \(T^{-1}(\vec{e}_1)\text{.}\)
(b)
Solve \(T(\vec x)=\vec{e}_2\) to find \(T^{-1}(\vec{e}_2)\text{.}\)
(c)
Solve \(T(\vec x)=\vec{e}_3\) to find \(T^{-1}(\vec{e}_3)\text{.}\)
(d)
Write \(A^{-1}\text{,}\) the standard matrix for \(T^{-1}\text{.}\)

Observation 4.2.8.

We could have solved these three systems simultaneously by row reducing the matrix \([A\,|\,I]\) at once.
\begin{equation*} \left[\begin{array}{ccc|ccc} 2 & -1 & -6 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 & 1 & 0 \\ 1 & 1 & 4 & 0 & 0 & 1 \end{array}\right] \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & -2 & 3 \\ 0 & 1 & 0 & -5 & 14 & -18 \\ 0 & 0 & 1 & 1 & -3 & 4 \end{array}\right] \end{equation*}

Activity 4.2.9.

Find the inverse \(A^{-1}\) of the matrix \(A=\left[\begin{array}{cc} 1 & 3 \\ 0 & -2 \end{array}\right]\) by row-reducing \([A\,|\,I]\text{.}\)

Activity 4.2.10.

Is the matrix \(\left[\begin{array}{ccc} 2 & 3 & 1 \\ -1 & -4 & 2 \\ 0 & -5 & 5 \end{array}\right]\) invertible? Give a reason for your answer.

Observation 4.2.11.

An \(n\times n\) matrix \(A\) is invertible if and only if \(\RREF(A) = I_n\text{.}\)

Activity 4.2.12.

Let \(T:\IR^2\to\IR^2\) be the bijective linear map defined by \(T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right)=\left[\begin{array}{c} 2x -3y \\ -3x + 5y\end{array}\right]\text{,}\) with the inverse map \(T^{-1}\left(\left[\begin{array}{c}x\\y\end{array}\right]\right)=\left[\begin{array}{c} 5x+ 3y \\ 3x + 2y\end{array}\right]\text{.}\)
(a)
Compute \((T^{-1}\circ T)\left(\left[\begin{array}{c}-2\\1\end{array}\right]\right)\text{.}\)
(b)
If \(A\) is the standard matrix for \(T\) and \(A^{-1}\) is the standard matrix for \(T^{-1}\text{,}\) find the \(2\times 2\) matrix
\begin{equation*} A^{-1}A=\left[\begin{array}{ccc}\unknown&\unknown\\\unknown&\unknown\end{array}\right]. \end{equation*}

Observation 4.2.13.

\(T^{-1}\circ T=T\circ T^{-1}\) is the identity map for any bijective linear transformation \(T\text{.}\) Therefore \(A^{-1}A=AA^{-1}\) equals the identity matrix \(I\) for any invertible matrix \(A\text{.}\)

Subsection 4.2.2 Videos

Figure 43. Video: Invertible matrices
Figure 44. Video: Finding the inverse of a matrix

Subsection 4.2.3 Slideshow

Exercises 4.2.4 Exercises

Subsection 4.2.5 Mathematical Writing Explorations

Exploration 4.2.14.

Assume \(A\) is an \(n \times n\) matrix. Prove the following are equivalent. Some of these results you have proven previously.
  • \(A\) is non-singular.
  • \(A\) row reduces to the identity matrix.
  • For any choice of \(\vec{b} \in \mathbb{R}^n\text{,}\) the system of equations represented by the augmented matrix \([A|\vec{b}]\) has a unique solution.
  • The columns of \(A\) are a linearly independent set.
  • The columns of \(A\) form a basis for \(\mathbb{R}^n\text{.}\)
  • The rank of \(A\) is \(n\text{.}\)
  • The nullity of \(A\) is 0.
  • \(A\) is invertible.
  • The linear transformation \(T\) with standard matrix \(A\) is injective and surjective. Such a map is called an isomorphism.

Exploration 4.2.15.

  • Assume \(T\) is a square matrix, and \(T^4\) is the zero matrix. Prove that \((I - T)^{-1} = I + T + T^2 + T^3.\) You will need to first prove a lemma that matrix multiplication distributes over matrix addition.
  • Generalize your result to the case where \(T^n\) is the zero matrix.

Subsection 4.2.6 Sample Problem and Solution

Sample problem Example B.1.19.