Skip to main content ☰ Contents Index You! < Prev ^ Up Next > \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.3 Solving Systems with Matrix Inverses (MX3)
Learning Outcomes
Subsection 4.3.1 Class Activities
Activity 4.3.1 .
Consider the following linear system with a unique solution:
\begin{equation*}
\begin{matrix}
3x_{1} & - & 2x_{2} & - & 2x_{3} & - & 4x_{4} & = & -7 \\
2x_{1} & - & x_{2} & - & x_{3} & - & x_{4} & = & -1 \\
-x_{1} & & & + & x_{3} & & & = & -1 \\
& - & x_{2} & & & - & 2x_{4} & = & -5 \\
\end{matrix}
\end{equation*}
(a)
Define
\begin{equation*}
T\left(\left[\begin{matrix}x_1\\x_2\\x_3\\x_4\end{matrix}\right]\right)=
\left[\begin{matrix}\hspace{1em}\unknown\hspace{1em}\\\hspace{1em}\unknown\hspace{1em}\\
\hspace{1em}\unknown\hspace{1em}\\\hspace{1em}\unknown\hspace{1em}\end{matrix}\right]
\end{equation*}
so that \(T(\vec x)=\left[\begin{matrix}-7\\-1\\-1\\-5\end{matrix}\right]\) has the same solution set as this system.
(b)
Define
\begin{equation*}
A=
\left[\begin{matrix}
\unknown&\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown&\unknown
\end{matrix}\right]
\end{equation*}
so that \(A\vec x=\left[\begin{matrix}-7\\-1\\-1\\-5\end{matrix}\right]\) has the same solution set as this system.
(c)
Find
\begin{equation*}
B=
\left[\begin{matrix}
\unknown&\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown&\unknown
\end{matrix}\right]
\end{equation*}
so that \(BA\vec x=\vec x\text{.}\)
(d)
Find \(\vec x=BA\vec x=B\left[\begin{matrix}-7\\-1\\-1\\-5\end{matrix}\right]\) to solve the system.
Activity 4.3.3 .
Let \(A\vec x=\vec w\) describe a linear system. When will this linear system have exactly one solution?
When \(A\) is invertible.
When \(A\) is not invertible.
When \(\RREF A\) has a non-pivot column.
When \(\RREF A\) has a non-pivot row.
Fact 4.3.4 .
When \(A\vec x=\vec w\) has exactly one solution, this solution is given by \(\vec x=A^{-1}\vec w\text{.}\)
Activity 4.3.5 .
Consider the vector equation
\begin{equation*}
x_{1} \left[\begin{array}{c} 1 \\ 2 \\ -2 \end{array}\right] + x_{2} \left[\begin{array}{c} -2 \\ -3 \\ 3 \end{array}\right] + x_{3} \left[\begin{array}{c} 1 \\ 4 \\ -3 \end{array}\right] = \left[\begin{array}{c} -3 \\ 5 \\ -1 \end{array}\right]
\end{equation*}
with a unique solution.
(a)
Explain and demonstrate how this problem can be restated using matrix multiplication.
(b)
Use the properties of matrix multiplication to find the unique solution.
Exercises 4.3.3 Exercises
Subsection 4.3.4 Mathematical Writing Explorations
Exploration 4.3.6 .
Use row reduction to find the inverse of the following general matrix. Give conditions on which this inverse exists.
\begin{equation*}
\left[\begin{array}{ccc}1 & b & c \\ d & e & f \\ g & h & i \end{array}\right]
\end{equation*}
Exploration 4.3.7 .
Assume that \(H\) is invertible, and that \(HG\) is the zero matrix. Prove that \(G\) must be the zero matrix. Would this still be true if \(H\) were not invertible?
Exploration 4.3.8 .
If \(H\) is invertible and \(r \in \mathbb{R}\text{,}\) what is the inverse of \(rH\text{?}\)
Exploration 4.3.9 .
If \(H\) and \(G\) are invertible, is \(H^{-1} + G^{-1} = (H+G)^{-1}\text{?}\)
Exploration 4.3.10 .
If \(A\) is nonsingular and square, and both \(P\) and \(Q\) are nonsingular, with \(PAQ = I\text{,}\) prove that \(A^{-1} = QP\text{.}\)
Subsection 4.3.5 Sample Problem and Solution
www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj