Skip to main content

Section 4.4 Row Operations as Matrix Multiplication (MX4)

Subsection 4.4.1 Class Activities

Activity 4.4.1.

Tweaking the identity matrix slightly allows us to write row operations in terms of matrix multiplication.
(a)
Create a matrix that doubles the third row of \(A\text{:}\)
\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{array}\right] \end{equation*}
(b)
Create a matrix that swaps the second and third rows of \(A\text{:}\)
\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2 & 7 & -1 \\ 1 & 1 & -1 \\ 0 & 3 & 2 \end{array}\right] \end{equation*}
(c)
Create a matrix that adds \(5\) times the third row of \(A\) to the first row:
\begin{equation*} \left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right] \left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] = \left[\begin{array}{ccc} 2+5(1) & 7+5(1) & -1+5(-1) \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right] \end{equation*}

Activity 4.4.3.

Consider the two row operations \(R_2\leftrightarrow R_3\) and \(R_1+R_2\to R_1\) applied as follows to show \(A\sim B\text{:}\)
\begin{align*} A = \left[\begin{array}{ccc} -1&4&5\\ 0&3&-1\\ 1&2&3\\ \end{array}\right] &\sim \left[\begin{array}{ccc} -1&4&5\\ 1&2&3\\ 0&3&-1\\ \end{array}\right]\\ &\sim \left[\begin{array}{ccc} -1+1&4+2&5+3\\ 1&2&3\\ 0&3&-1\\ \end{array}\right] = \left[\begin{array}{ccc} 0&6&8\\ 1&2&3\\ 0&3&-1\\ \end{array}\right] = B \end{align*}
Express these row operations as matrix multiplication by expressing \(B\) as the product of two matrices and \(A\text{:}\)
\begin{equation*} B = \left[\begin{array}{ccc} \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown \end{array}\right] \left[\begin{array}{ccc} \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown\\ \unknown&\unknown&\unknown \end{array}\right] A \end{equation*}
Check your work using technology.

Subsection 4.4.2 Videos

Figure 45. Video: Row operations as matrix multiplication

Subsection 4.4.3 Slideshow

Exercises 4.4.4 Exercises

Subsection 4.4.5 Sample Problem and Solution

Sample problem Example B.1.21.