Skip to main content\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.4 Row Operations as Matrix Multiplication (MX4)
Learning Outcomes
Subsection 4.4.1 Class Activities
Activity 4.4.1.
Tweaking the identity matrix slightly allows us to write row operations in terms of matrix multiplication.
(a)
Create a matrix that doubles the third row of \(A\text{:}\)
\begin{equation*}
\left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right]
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
=
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{array}\right]
\end{equation*}
(b)
Create a matrix that swaps the second and third rows of \(A\text{:}\)
\begin{equation*}
\left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right]
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
=
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 1 & 1 & -1 \\ 0 & 3 & 2 \end{array}\right]
\end{equation*}
(c)
Create a matrix that adds \(5\) times the third row of \(A\) to the first row:
\begin{equation*}
\left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right]
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
=
\left[\begin{array}{ccc} 2+5(1) & 7+5(1) & -1+5(-1) \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
\end{equation*}
Fact 4.4.2.
If \(R\) is the result of applying a row operation to \(I\text{,}\) then \(RA\) is the result of applying the same row operation to \(A\text{.}\)
Scaling a row: \(R=
\left[\begin{array}{ccc}
c & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)
Swapping rows: \(R=
\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\)
Adding a row multiple to another row: \(R=
\left[\begin{array}{ccc}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)
Such matrices can be chained together to emulate multiple row operations. In particular,
\begin{equation*}
\RREF(A)=R_k\dots R_2R_1A
\end{equation*}
for some sequence of matrices \(R_1,R_2,\dots,R_k\text{.}\)
Activity 4.4.3.
Consider the two row operations \(R_2\leftrightarrow R_3\) and \(R_1+R_2\to R_1\) applied as follows to show \(A\sim B\text{:}\)
\begin{align*}
A
=
\left[\begin{array}{ccc}
-1&4&5\\
0&3&-1\\
1&2&3\\
\end{array}\right]
&\sim
\left[\begin{array}{ccc}
-1&4&5\\
1&2&3\\
0&3&-1\\
\end{array}\right]\\
&\sim
\left[\begin{array}{ccc}
-1+1&4+2&5+3\\
1&2&3\\
0&3&-1\\
\end{array}\right]
=
\left[\begin{array}{ccc}
0&6&8\\
1&2&3\\
0&3&-1\\
\end{array}\right]
=
B
\end{align*}
Express these row operations as matrix multiplication by expressing \(B\) as the product of two matrices and \(A\text{:}\)
\begin{equation*}
B =
\left[\begin{array}{ccc}
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown
\end{array}\right]
\left[\begin{array}{ccc}
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown
\end{array}\right]
A
\end{equation*}
Check your work using technology.
Subsection 4.4.2 Videos
Subsection 4.4.3 Slideshow
Exercises 4.4.4 Exercises
Subsection 4.4.5 Sample Problem and Solution