Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.6 Polar area (CO6)
Learning Outcomes
Subsection 7.6.1 Activities
Fact 7.6.1.
The area of the “fan-shaped” region between the pole and \(r=f(\theta)\) as the angle \(\theta\) ranges from \(\alpha\) to \(\beta\) is given by
\begin{equation*}
\int_{\theta=\alpha}^{\theta=\beta} \frac{r^2}{2}d\theta\text{.}
\end{equation*}
Activity 7.6.2.
(a)
Find an integral computing the area of the region defined by \(0\leq r\leq-\cos(\theta)+5\) and \(\pi/2\leq \theta\leq 3\pi/4\text{.}\)
(b)
Find the area enclosed by the cardioid \(r=2(1+\cos(\theta)\text{.}\)
(c)
Find the area enclosed by one loop of the 4-petaled rose \(r=\cos(2\theta)\text{.}\)