Skip to main content

Section 5.4 Trigonometric Substitution (TI4)

Subsection 5.4.1 Activities

Activity 5.4.1.

Consider 94x2dx. Which substitution would you choose to evaluate this integral?
  1. u=94x2
  2. u=94x2
  3. u=32x
  4. Substitution is not effective

Activity 5.4.2.

To find 94x2dx, we will need a more advanced substitution. Which of these candidates is most reasonable?
  1. Let v satisfy 94x2=99e2v=9e2v.
  2. Let θ satisfy 94x2=99sin2θ=9cos2θ.
  3. Let w satisfy 94x2=48ln|w|=4ln|2w|.
  4. Let ϕ satisfy 94x2=44cos2ϕ=4sin2ϕ.

Activity 5.4.3.

Fill in the missing ?s for the following calculation.
Let 94x2=99sin2θ=9cos2θ4x2=?x=?dx=?dθ
94x2dx=?(?dθ)=92cos2θdθ

Activity 5.4.4.

From Section 5.3 we may find cos2θdθ=12θ+12sinθcosθ+C.
Use this to continue your work in the previous activity and complete the integration by trigonometric substitution.
sin(θ)=?θ=arcsin(?)cos(θ)=??
94x2dx==92cos2θdθ=92(12θ+12sinθcosθ)+C=94(?)+94(?)(?)+C

Activity 5.4.5.

Use similar reasoning to complete the following proof that ddx[arcsin(x)]=11x2.
Let 1x2=1?θ=?θx2=?x=?dx=?dθθ=?
11x2dx=1?(?dθ)=dθ=?+C=arcsin(x)+C

Activity 5.4.6.

Substitutions of the form
1625x2=1616sin2x=16cos2x
are made possible due to the Pythagorean identity sin2(x)+cos2(x)=1.
Which two of these four identities can be obtained from dividing both sides of sin2(x)+cos2(x)=1 by cos2(x) and rearranging?
  1. tan2(x)1=sec2(x)
  2. tan2(x)+1=sec2(x)
  3. sec2(x)1=tan2(x)
  4. sec2(x)+1=tan2(x)

Observation 5.4.7.

In summary, certain quadratic expressions inside an integral may be substituted with trigonometric functions to take advantage of trigonometric identities and simplify the integrand:
Let bax2=bbsin2(θ)=bcos2(θ)So x=basin(θ)
Let b+ax2=b+btan2(θ)=bsec2(θ)So x=batan(θ)
Let ax2b=bsec2(θ)b=btan2(θ)So x=basec(θ)

Activity 5.4.8.

Complete the following trignometric substitution to find 34+25x2dx.
Let 4+25x2=2+?θ=?θ25x2=?x=?dx=?dθθ=?
34+25x2dx=3?(?dθ)=?dθ=?+C=310arctan(52x)+C

Activity 5.4.9.

Complete the following trignometric substitution to find 7x9x216dx.
Let 9x216=?θ16=?θ9x2=?x=?dx=?dθθ=?
7x9x216dx=7??(?dθ)=?dθ=?+C=74arcsec(34x)+C

Activity 5.4.10.

Use appropriate trignometric substitutions and the given trigonometric integrals to find each of the following.
(a)
9x2+16x2dx==3cos2θsin2θdθ=3θ3cosθsinθ+C=3arcsin(?)??+C
(b)
29x216xdx==8tan2θdθ=8tanθ8θ+C=??8arcsec(?)+C
(c)
181x2+4dx==19secθdθ=19log|secθ+tanθ|+C=19log|?+12?|+C

Activity 5.4.11.

Consider the unit circle x2+y2=1. Find a function f(x) so that y=f(x) is the graph of the upper-half semicircle of the unit circle.

Subsection 5.4.2 Videos

Figure 108. Video: Use trigonometric substitution to compute indefinite integrals