🔗 Activity 5.4.1. 🔗 🔗Consider .∫9−4x2dx. Which substitution would you choose to evaluate this integral? 🔗u=9−4x2 🔗u=9−4x2 🔗u=3−2x 🔗Substitution is not effective
🔗 Activity 5.4.2. 🔗 🔗To find ,∫9−4x2dx, we will need a more advanced substitution. Which of these candidates is most reasonable? 🔗Let v satisfy .9−4x2=9−9e2v=9e−2v. 🔗Let θ satisfy .9−4x2=9−9sin2θ=9cos2θ. 🔗Let w satisfy .9−4x2=4−8ln|w|=4ln|2w|. 🔗Let ϕ satisfy .9−4x2=4−4cos2ϕ=4sin2ϕ.
🔗 Activity 5.4.3. 🔗 🔗Fill in the missing ?s for the following calculation. Let Let 9−4x2=9−9sin2θ=9cos2θ4x2=?x=?dx=?dθ ∫9−4x2dx=∫?(?dθ)=∫92cos2θdθ
🔗 Activity 5.4.4. 🔗From Section 5.3 we may find .∫cos2θdθ=12θ+12sinθcosθ+C. 🔗Use this to continue your work in the previous activity and complete the integration by trigonometric substitution. sin(θ)=?θ=arcsin(?)cos(θ)=?? ∫9−4x2dx=⋯=∫92cos2θdθ=92(12θ+12sinθcosθ)+C=94(?)+94(?)(?)+C
🔗 Activity 5.4.5. 🔗 🔗Use similar reasoning to complete the following proof that .ddx[arcsin(x)]=11−x2. Let Let 1−x2=1−?θ=?θx2=?x=?dx=?dθθ=? ∫11−x2dx=∫1?(?dθ)=∫dθ=?+C=arcsin(x)+C
🔗 Activity 5.4.6. 🔗 🔗Substitutions of the form 16−25x2=16−16sin2x=16cos2x 🔗are made possible due to the Pythagorean identity .sin2(x)+cos2(x)=1. 🔗 🔗Which two of these four identities can be obtained from dividing both sides of sin2(x)+cos2(x)=1 by cos2(x) and rearranging? 🔗tan2(x)−1=sec2(x) 🔗tan2(x)+1=sec2(x) 🔗sec2(x)−1=tan2(x) 🔗sec2(x)+1=tan2(x)
🔗 Observation 5.4.7. 🔗 🔗In summary, certain quadratic expressions inside an integral may be substituted with trigonometric functions to take advantage of trigonometric identities and simplify the integrand: Let So Let b−ax2=b−bsin2(θ)=bcos2(θ)So x=basin(θ) Let So Let b+ax2=b+btan2(θ)=bsec2(θ)So x=batan(θ) Let So Let ax2−b=bsec2(θ)−b=btan2(θ)So x=basec(θ)
🔗 Activity 5.4.8. 🔗 🔗Complete the following trignometric substitution to find .∫34+25x2dx. Let Let 4+25x2=2+?θ=?θ25x2=?x=?dx=?dθθ=? ∫34+25x2dx=∫3?(?dθ)=∫?dθ=?+C=310arctan(52x)+C
🔗 Activity 5.4.9. 🔗 🔗Complete the following trignometric substitution to find .∫7x9x2−16dx. Let Let 9x2−16=?θ−16=?θ9x2=?x=?dx=?dθθ=? ∫7x9x2−16dx=∫7??(?dθ)=∫?dθ=?+C=74arcsec(34x)+C
🔗 Activity 5.4.10. 🔗Use appropriate trignometric substitutions and the given trigonometric integrals to find each of the following. 🔗(a) 🔗 ∫−9x2+16x2dx=⋯=∫3cos2θsin2θdθ=−3θ−3cosθsinθ+C=−3arcsin(?)−??+C 🔗(b) 🔗 ∫29x2−16xdx=⋯=∫8tan2θdθ=8tanθ−8θ+C=??−8arcsec(?)+C 🔗(c) 🔗 ∫181x2+4dx=⋯=∫19secθdθ=19log|secθ+tanθ|+C=19log|?+12?|+C
🔗 Activity 5.4.11. 🔗Consider the unit circle .x2+y2=1. Find a function f(x) so that y=f(x) is the graph of the upper-half semicircle of the unit circle.
🔗 Activity 5.4.12. 🔗(a) 🔗Find the area under the curve y=f(x) from Activity 5.4.11.🔗(b) 🔗How does this value compare to what we know about areas of circles?