Skip to main content

Section 8.7 Ratio and Root Tests (SQ7)

Subsection 8.7.1 Activities

Activity 8.7.1.

Consider the series n=02n3n2.
(a)
Which of these series most closely resembles n=02n3n2?
  1. n=023.
  2. n=023n.
  3. n=0(23)n.
(b)
Based on your previous choice, do we think this series is more likely to converge or diverge?
(c)
Find limn2n+13n+122n3n2=limn2n+1(3n2)(3n+12)2n=limn22n(3n2)3(3n23)2n.
  1. limn2n+13n+122n3n2=0.
  2. limn2n+13n+122n3n2=23.
  3. limn2n+13n+122n3n2=1.
  4. limn2n+13n+122n3n2=2.
  5. limn2n+13n+122n3n2=3.

Activity 8.7.4.

Consider the series n=1an=n=11n.
(a)
Does n=1an=n=11n converge?

Activity 8.7.5.

Consider the series n=1an=n=1(1)nn.
(a)
Does n=1an=n=1(1)nn converge?

Activity 8.7.8.

Consider the series n=0n2n!.
(c)
Which of the following is |an+1an|?
  1. (n+1)2n2(n+1)!n!.
  2. (n+1)2n!(n+1)!n2.
  3. (n+1)!n!(n+1)2n2.
  4. (n+1)!n2(n+1)2n!.
(d)
Using the fact (n+1)!=(n+1)n!, simplify |an+1an| as much as possible.
(f)
Does n=0n2n! converge?

Activity 8.7.10.

For each series, use the ratio or root test to determine if the series converges or diverges.

Activity 8.7.11.

Consider the series n=02n+53n.
(a)
Use the root test to check for convergence of this series.
(b)
Use the ratio test to check for convergence of this series.
(c)
Use the comparison (or limit comparison) test to check for convergence of this series.
(d)
Find the sum of this series.

Activity 8.7.12.

Consider n=1n3n. Recall that n3nn=(n3n)1/n=n1/n(3n)1/n.
(a)
Let α=limnln(n1/n)=limn1nln(n). Find α.
(b)
Recall that limnn1/n=limneln(n1/n)=eα. Find limnn1/n.
(c)
Find limnn3nn=limn(n3n)1/n=limnn1/n(3n)1/n.

Activity 8.7.13.

Consider the series n=0n22n.
(a)
Use the root test to check for convergence of this series.
(b)
Use the ratio test to check for convergence of this series.
(c)
Use the comparison (or limit comparison) test to check for convergence of this series.

Subsection 8.7.2 Videos

Figure 177. Video: Use the ratio and root tests to determine if a series converges or diverges