🔗 Activity 8.7.1. 🔗Consider the series ∑n=0∞2n3n−2. 🔗(a) 🔗 🔗Which of these series most closely resembles ?∑n=0∞2n3n−2? 🔗.∑n=0∞23. 🔗.∑n=0∞23n. 🔗.∑n=0∞(23)n. 🔗(b) 🔗Based on your previous choice, do we think this series is more likely to converge or diverge?🔗(c) 🔗 🔗Find limn→∞2n+13n+1−22n3n−2=limn→∞2n+1(3n−2)(3n+1−2)2n=limn→∞2⋅2n(3n−2)3(3n−23)2n. 🔗.limn→∞2n+13n+1−22n3n−2=0. 🔗.limn→∞2n+13n+1−22n3n−2=23. 🔗.limn→∞2n+13n+1−22n3n−2=1. 🔗.limn→∞2n+13n+1−22n3n−2=2. 🔗.limn→∞2n+13n+1−22n3n−2=3.
🔗(a) 🔗 🔗Which of these series most closely resembles ?∑n=0∞2n3n−2? 🔗.∑n=0∞23. 🔗.∑n=0∞23n. 🔗.∑n=0∞(23)n.
🔗(c) 🔗 🔗Find limn→∞2n+13n+1−22n3n−2=limn→∞2n+1(3n−2)(3n+1−2)2n=limn→∞2⋅2n(3n−2)3(3n−23)2n. 🔗.limn→∞2n+13n+1−22n3n−2=0. 🔗.limn→∞2n+13n+1−22n3n−2=23. 🔗.limn→∞2n+13n+1−22n3n−2=1. 🔗.limn→∞2n+13n+1−22n3n−2=2. 🔗.limn→∞2n+13n+1−22n3n−2=3.
🔗 Activity 8.7.2. 🔗Consider the series .∑n=0∞an=∑n=0∞32n. 🔗(a) 🔗Does ∑n=0∞an=∑n=0∞32n converge?🔗(b) 🔗 🔗Find .an+1an. 🔗.2. 🔗.12. 🔗.2n2n+1. 🔗.922n+1. 🔗.92n+2. 🔗(c) 🔗 🔗Find limn→∞|an+1an|. 🔗.−∞. 🔗.0. 🔗.12. 🔗.2. 🔗.∞.
🔗 Activity 8.7.3. 🔗Consider the series .∑n=1∞an=∑n=1∞n2n+1. 🔗(a) 🔗Does ∑n=1∞an=∑n=1∞n2n+1 converge?🔗(b) 🔗 🔗Find .an+1an. 🔗.n+12. 🔗.(n2+1)(n+1)(n+2)n2. 🔗.(n+1)2n+2. 🔗.12. 🔗.(n+1)n2n+2. 🔗(c) 🔗 🔗Find limn→∞|an+1an|. 🔗.−∞. 🔗.0. 🔗.12. 🔗.2. 🔗.∞.
🔗 Activity 8.7.4. 🔗Consider the series .∑n=1∞an=∑n=1∞1n. 🔗(a) 🔗Does ∑n=1∞an=∑n=1∞1n converge?🔗(b) 🔗Find .an+1an. 🔗(c) 🔗Find limn→∞|an+1an|.
🔗 Activity 8.7.5. 🔗Consider the series .∑n=1∞an=∑n=1∞(−1)nn. 🔗(a) 🔗Does ∑n=1∞an=∑n=1∞(−1)nn converge?🔗(b) 🔗Find .an+1an. 🔗(c) 🔗Find limn→∞|an+1an|.
🔗 Fact 8.7.6. The Ratio Test. 🔗 🔗Let ∑an be a series and suppose that .limn→∞|an+1an|=ρ. Then 🔗 ∑an converges if ρ is less than 1, and 🔗 ∑an diverges if ρ is greater than 1. 🔗If ,ρ=1, we cannot determine if ∑an converges or diverges with this method.
🔗 Fact 8.7.7. The Root Test. 🔗 🔗Let N be an integer and let ∑an be a series with an≥0 for ,n≥N, and suppose that .limn→∞|an|n=ρ. Then 🔗 ∑an converges if ρ is less than 1, and 🔗 ∑an diverges if ρ is greater than 1. 🔗If ,ρ=1, we cannot determine if ∑an converges or diverges with this method.
🔗 Activity 8.7.8. 🔗Consider the series .∑n=0∞n2n!. 🔗(a) 🔗 🔗Which of the following is ?an? 🔗.n2. 🔗.n!. 🔗.n2n!. 🔗(b) 🔗 🔗Which of the following is ?an+1? 🔗.n2n!. 🔗.(n+1)2. 🔗.(n+1)!. 🔗.(n+1)2(n+1)!. 🔗.n2+1n!+1. 🔗(c) 🔗 🔗Which of the following is ?|an+1an|? 🔗.(n+1)2n2(n+1)!n!. 🔗.(n+1)2n!(n+1)!n2. 🔗.(n+1)!n!(n+1)2n2. 🔗.(n+1)!n2(n+1)2n!. 🔗(d) 🔗Using the fact ,(n+1)!=(n+1)⋅n!, simplify |an+1an| as much as possible.🔗(e) 🔗Find .limn→∞|an+1an|. 🔗(f) 🔗Does ∑n=0∞n2n! converge?
🔗(c) 🔗 🔗Which of the following is ?|an+1an|? 🔗.(n+1)2n2(n+1)!n!. 🔗.(n+1)2n!(n+1)!n2. 🔗.(n+1)!n!(n+1)2n2. 🔗.(n+1)!n2(n+1)2n!.
🔗 Activity 8.7.9. 🔗(a) 🔗What is ?an? 🔗(b) 🔗 🔗Which of the following is ?|an|n? 🔗.n+19. 🔗.n9. 🔗.n. 🔗.9. 🔗.19. 🔗(c) 🔗Find .limn→∞|an|n. 🔗(d) 🔗Does ∑n=1∞nn9n converge?
🔗 Activity 8.7.10. 🔗For each series, use the ratio or root test to determine if the series converges or diverges. 🔗(a) 🔗∑n=1∞(11+n)n🔗(b) 🔗∑n=1∞2nnn🔗(c) 🔗∑n=1∞(2n)!(n!)(n!)🔗(d) 🔗∑n=1∞4n(n!)(n!)(2n)!
🔗 Activity 8.7.11. 🔗Consider the series .∑n=0∞2n+53n. 🔗(a) 🔗Use the root test to check for convergence of this series.🔗(b) 🔗Use the ratio test to check for convergence of this series.🔗(c) 🔗Use the comparison (or limit comparison) test to check for convergence of this series.🔗(d) 🔗Find the sum of this series.
🔗 Activity 8.7.12. 🔗Consider .∑n=1∞n3n. Recall that n3nn=(n3n)1/n=n1/n(3n)1/n. 🔗(a) 🔗Let .α=limn→∞ln(n1/n)=limn→∞1nln(n). Find .α. 🔗(b) 🔗Recall that limn→∞n1/n=limn→∞eln(n1/n)=eα. Find .limn→∞n1/n. 🔗(c) 🔗Find .limn→∞n3nn=limn→∞(n3n)1/n=limn→∞n1/n(3n)1/n. 🔗(d) 🔗Does ∑n=1∞n3n converge?
🔗 Activity 8.7.13. 🔗Consider the series .∑n=0∞n22n. 🔗(a) 🔗Use the root test to check for convergence of this series.🔗(b) 🔗Use the ratio test to check for convergence of this series.🔗(c) 🔗Use the comparison (or limit comparison) test to check for convergence of this series.