Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix B List of Trigonometric Identities
\(\displaystyle [\sin(\alpha)]^2+[\cos(\alpha)]^2=1\)
\(\displaystyle \cos(\alpha+\beta)=\cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta)\)
\(\displaystyle \sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)\)
\(\displaystyle \cos(2\alpha) = [\cos(\alpha)]^2-[\sin(\alpha)]^2 = 2[\cos(\alpha)]^2-1 = 1-2[\sin(\alpha)]^2\)
\(\displaystyle \sin(2\alpha)=2\sin(\alpha)\cos(\alpha)\)
\(\displaystyle [\cos(\alpha)]^2=\displaystyle\frac{1+\cos(2\alpha)}{2}\)
\(\displaystyle [\sin(\alpha)]^2=\displaystyle\frac{1-\cos(2\alpha)}{2}\)
\(\displaystyle \sin(\alpha)\cos(\beta)=\displaystyle\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}\)
\(\displaystyle \sin(\alpha)\sin(\beta)=\displaystyle\frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{2}\)
\(\displaystyle \cos(\alpha)\sin(\beta)=\displaystyle\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2}\)
\(\displaystyle \cos(\alpha)\cos(\beta)=\displaystyle\frac{\cos(\alpha-\beta)+\cos(\alpha+\beta)}{2}\)
\(\displaystyle \sin(\alpha)+\sin(\beta)=2\sin\left(\displaystyle\frac{\alpha+\beta}{2}\right)\cos\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)
\(\displaystyle \sin(\alpha)-\sin(\beta)=2\cos\left(\displaystyle\frac{\alpha+\beta}{2}\right)\sin\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)
\(\displaystyle \cos(\alpha)+\cos(\beta)=2\cos\left(\displaystyle\frac{\alpha+\beta}{2}\right)\cos\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)
\(\displaystyle \cos(\alpha)-\cos(\beta)=-2\sin\left(\displaystyle\frac{\alpha+\beta}{2}\right)\sin\left(\displaystyle\frac{\alpha-\beta}{2}\right)\)