Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 7 Coordinates and Vectors (CO)
Learning Outcomes
How do we use alternative coordinates and vectors to describe points in the plane?
By the end of this chapter, you should be able to...
Sketch the graph of a two-dimensional parametric/vector equation, and convert such equations into equations of only \(x\) and \(y\text{.}\)
Compute derivatives and tangents related to two-dimensional parametric/vector equations.
Compute arclengths related to two-dimensional parametric/vector equations.
Convert points and equations between polar and Cartesian coordinates and equations.
Compute arclengths of curves given in polar coordinates.
Compute areas bounded by curves given in polar coordinates.
Readiness Assurance.
Before beginning this chapter, you should be able to...
Write equations of lines using slope-intercept and/or point-slope form (
Math is Fun 1 )
Find an integral which computes the arclength of a curve using methods from
Section 2.4.