Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 4 Definite and Indefinite Integrals (IN)
Learning Outcomes
By the end of this chapter, you should be able to...
Use geometric formulas to compute definite integrals.
Approximate definite integrals using Riemann sums.
Determine basic antiderivatives.
Solve basic initial value problems.
Evaluate a definite integral using the Fundamental Theorem of Calculus.
Find the derivative of an integral using the Fundamental Theorem of Calculus.
Use definite integrals to find area under a curve.
Use definite integral(s) to compute the area bounded by several curves.
Readiness Assurance.
Before beginning this chapter, you should be able to...
Find the derivative of a function using elementary derivative rules. (
Section 2.3)
Find the area of plane shapes, such as rectangles, triangles, circles, and trapezoids. (
Math is fun 6 )