Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 1 Limits (LT)
Learning Outcomes
How do we measure “close-by” values?
By the end of this chapter, you should be able to...
Find limits from the graph of a function.
Infer the value of a limit based on nearby values of the function.
Compute limits of functions given algebraically, using proper limit properties.
Determine where a function is and is not continuous.
Determine limits of functions at infinity.
Determine limits of functions approaching vertical asymptotes.
Readiness Assurance.
Before beginning this chapter, you should be able to...
-
Use function notation and evaluate functions
-
Find the domain of a function
-
Determine vertical asymptotes, horizontal asymptotes, and holes (removable discontinuities) of rational functions
-
Perform basic operations with polynomials
-
Factor quadratic expressions
-
Represent intervals using number lines, inequalities, and interval notation