Skip to main content Contents
Prev Up Next \(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.4 Geometric Series (SQ4)
Learning Outcomes
Subsection 8.4.1 Activities
Activity 8.4.1 .
Recall from
Section 8.3 that for any real numbers
\(a, r\) and
\(\displaystyle S_n=\sum_{i=0}^n ar^i\) that:
\begin{align*}
S_n=\sum_{i=0}^n ar^i &= a+ar+ar^2+\cdots ar^n\\
(1-r)S_n=(1-r)\sum_{i=0}^n ar^i&= (1-r)(a+ar+ar^2+\cdots ar^n)\\
(1-r)S_n=(1-r)\sum_{i=0}^n ar^i&= a-ar^{n+1}\\
S_n&=a\frac{1-r^{n+1}}{1-r}.
\end{align*}
(a)
Using
Definition 8.3.12 , for which values of
\(r\) does
\(\displaystyle \sum_{n=0}^\infty ar^n\) converges?
\(|r|>1\text{.}\)
\(|r|=1\text{.}\)
\(|r|<1\text{.}\)
The series converges for every value of \(r\text{.}\)
(b)
Where possible, determine what value \(\displaystyle \sum_{n=0}^\infty ar^n\) converges to.
Fact 8.4.2 .
Geometric series are sums of the form
\begin{equation*}
\sum_{n=0}^\infty ar^n=a+ar+ar^2+ar^3+\dots\text{,}
\end{equation*}
where \(a\) and \(r\) are real numbers. When \(|r|<1\) this series converges to the value \(\displaystyle\frac{a}{1-r}\text{.}\) Otherwise, the geometric series diverges.
Activity 8.4.3 .
Consider the infinite series
\begin{equation*}
5+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots.
\end{equation*}
(a)
Complete the following rearrangement of terms.
\begin{align*}
5+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots & = \unknown + \left(3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots\right)\\
& = \unknown + \sum_{n=0}^\infty \unknown \cdot \left(\frac{1}{\unknown}\right)^n
\end{align*}
(b)
Since \(|\frac{1}{\unknown}|<1\text{,}\) this series converges. Use the formula \(\sum_{n=0}^\infty ar^n=\frac{a}{1-r}\) to find the value of this series.
\(\displaystyle \frac{7}{2}\)
\(\displaystyle \frac{13}{2}\)
\(\displaystyle 8\)
\(\displaystyle 10\)
Activity 8.4.4 .
Complete the following calculation, noting \(|0.6|<1\text{:}\)
\begin{align*}
\sum_{n=2}^\infty 2(0.6)^n &=\left(\sum_{n=0}^\infty 2(0.6)^n\right) - \unknown - \unknown \\
& = \left(\frac{\unknown}{1-\unknown}\right)- \unknown - \unknown
\end{align*}
What does this simplify to?
\(\displaystyle 1.1\)
\(\displaystyle 1.4\)
\(\displaystyle 1.8\)
\(\displaystyle 2.1\)
Activity 8.4.6 .
For each of the following modified geometric series, determine without rewriting if they converge or diverge.
(a)
\(\displaystyle -7+\left( -\frac{3}{7}\right)^2+\left( -\frac{3}{7}\right)^3+\cdots\text{.}\)
(b)
\(-6+\left(\frac{5}{4}\right)^3+\left(\frac{5}{4}\right)^4+\cdots\text{.}\)
(c)
\(\displaystyle 4+\sum_{n=4}^\infty \left(\frac{2}{3}\right)^n\text{.}\)
(d)
\(8-1+1-1+1-1+\cdots\text{.}\)
Activity 8.4.7 .
Find the value of each of the following convergent series.
(a)
\(-1 + \sum_{n = 1 }^\infty 2\cdot\left(\frac{1}{2}\right)^n\text{.}\)
(b)
\(\displaystyle -7+\left( -\frac{3}{7}\right)^2+\left( -\frac{3}{7}\right)^3+\cdots\text{.}\)
(c)
\(\displaystyle 4+\sum_{n=4}^\infty \left(\frac{2}{3}\right)^n\text{.}\)
Subsection 8.4.2 Videos
Figure 178. Video: Determine if a geometric series converges, and if so, the value it converges to.