Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\unknown}{{\color{gray} ?}}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 5 Techniques of Integration (TI)
Learning Outcomes
How do we use various techniques to integrate less simple functions?
By the end of this chapter, you should be able to...
Evaluate various integrals via the substitution method.
Compute integrals using integration by parts.
Compute integrals involving products of trigonometric functions.
Use trigonometric substitution to compute indefinite integrals.
I can integrate functions using a table of integrals.
I can integrate functions using the method of partial fractions.
I can select appropriate strategies for integration.
I can compute improper integrals.
Readiness Assurance.
Before beginning this chapter, you should be able to...
-
Recognize when to apply the chain rule, and use it successfully.
-
Recognize when to apply the product rule, and use it successfully.
-
Perform basic definite integrals.
-
Compute basic antiderivatives.
-
Differentiate trigonometric functions.
-
Compute limits.
-
Apply the pythagorean identity.