Skip to main content

Section 8.4 Geometric Series (SQ4)

Activity 8.4.1.

Recall from Section 8.3 that for any real numbers a,r and Sn=∑i=0nari that:

Sn=∑i=0nari=a+ar+ar2+⋯arn(1−r)Sn=(1−r)∑i=0nari=(1−r)(a+ar+ar2+⋯arn)(1−r)Sn=(1−r)∑i=0nari=a−arn+1Sn=a1−rn+11−r.

(a)

Using Definition 8.3.12, given each restriction on r, determine if ∑n=0∞arn converges.

  1. r>1.

  2. r=1.

  3. −1<r<1.

  4. r=−1.

  5. r<−1.

(b)

Where possible, determine what value ∑n=0∞arn converges to.

Activity 8.4.3.

Consider the infinite series

5+12+14+18+⋯.

(a)

What of the following approaches will best help us determine the convergence of this series?

  1. This is a geometric series of the form ∑n=0∞5⋅(12)n.

  2. This is a geometric series of the form ∑n=0∞1⋅(12)n.

  3. We can rewrite

    5+12+14+18+⋯=4+(1+12+14+18+⋯).

(b)

Using your chosen approach, determine if 5+12+14+18+⋯ converges, and if so, to what it converges.

Activity 8.4.4.

Consider the infinite series

∑n=3∞2(0.7)n.

(a)

What of the following approaches will best help us determine the convergence of this series?

  1. Noticing that 3⋅∑n=3∞2(0.7)n=∑n=0∞2(0.7)n.

  2. Noticing that 2+∑n=3∞2(0.7)n=∑n=0∞2(0.7)n.

  3. Noticing that 2n+∑n=3∞2(0.7)n=∑n=0∞2(0.7)n.

  4. Noticing that 2(0.7)0+2(0.7)1+2(0.7)2+∑n=3∞2(0.7)n=∑n=0∞2(0.7)n.

  5. Noticing that 0+1+2+∑n=3∞2(0.7)n=∑n=0∞2(0.7)n.

(b)

Using your chosen approach, determine if ∑n=3∞2(0.7)n converges, and if so, to what it converges.

Example 8.4.5.

Given a series that appears to be mostly geometric:

3+(1.1)3+(1.1)4+⋯(1.1)n+⋯

we can rewrite it as the sum of a standard geometric series with some modification: ???+∑n=0∞a⋅rn:

3+(1.1)3+(1.1)4+⋯(1.1)n+⋯=3−[(1.1)0+(1.1)1+(1.1)2)]+[(1.1)0+(1.1)1+(1.1)2]+(1.1)3+⋯=3−[(1.1)0+(1.1)1+(1.1)2]+(1.1)0+(1.1)1+(1.1)2+(1.1)3+⋯=3−((1.1)0+(1.1)1+(1.1)2)+∑n=0∞(1.1)n=−0.31+∑n=0∞(1.1)n

which converges if and only if ∑n=0∞(1.1)n converges. In this case, it does not.

Activity 8.4.6.

For each of the following modified geometric series, rewrite them in the form ???+∑n=0∞a⋅rn.

  1. −7+(−37)2+(−37)3+⋯.

  2. −6+(54)3+(54)4+⋯.

  3. 4+∑n=4∞(23)n.

  4. 8−1+1−1+1−1+⋯.

Activity 8.4.7.

Use your rewritten forms from Activity 8.4.6 to determine which of the modified geometric series converge. If the series converges, find to what value it converges.

  1. −7+(−37)2+(−37)3+⋯.

  2. −6+(54)3+(54)4+⋯.

  3. 4+∑n=4∞(23)n.

  4. 8−1+1−1+1−1+⋯.

Activity 8.4.8.

Find the limit of the following series.

−1+∑n=1∞2⋅(12)n.

Subsection 8.4.1 Videos

Figure 152. Video: Determine if a geometric series converges, and if so, the value it converges to.