Section 8.4 Geometric Series (SQ4)
Learning Outcomes
Determine if a geometric series converges, and if so, the value it converges to.
Activity 8.4.1.
Recall from Section 8.3 that for any real numbers \(a, r\) and \(\displaystyle S_n=\sum_{i=0}^n ar^i\) that:
(a)
Using Definition 8.3.12, given each restriction on \(r\text{,}\) determine if \(\displaystyle \sum_{n=0}^\infty ar^n\) converges.
\(r>1\text{.}\)
\(r=1\text{.}\)
\(-1<r<1\text{.}\)
\(r=-1\text{.}\)
\(r<-1\text{.}\)
(b)
Where possible, determine what value \(\displaystyle \sum_{n=0}^\infty ar^n\) converges to.
Fact 8.4.2.
Geometric series are of the form \(\displaystyle \sum_{n=0}^\infty ar^n\text{,}\) where \(a\) and \(r\) are real numbers. A geometric series converges only when \(|r|<1\text{.}\) In this case, \(\displaystyle \sum_{n=0}^\infty ar^n=\frac{a}{1-r}\text{.}\) Otherwise, the geometric series diverges.
Activity 8.4.3.
Consider the infinite series
(a)
What of the following approaches will best help us determine the convergence of this series?
This is a geometric series of the form \(\displaystyle \sum_{n=0}^\infty 5\cdot \left(\frac{1}{2}\right)^n\text{.}\)
This is a geometric series of the form \(\displaystyle \sum_{n=0}^\infty 1\cdot \left(\frac{1}{2}\right)^n\text{.}\)
We can rewrite
\begin{equation*} 5+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots = 4+\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \right). \end{equation*}
(b)
Using your chosen approach, determine if \(5+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\) converges, and if so, to what it converges.
Activity 8.4.4.
Consider the infinite series
(a)
What of the following approaches will best help us determine the convergence of this series?
Noticing that \(\displaystyle 3\cdot\sum_{n=3}^\infty 2(0.7)^n=\sum_{n=0}^\infty 2(0.7)^n\text{.}\)
Noticing that \(\displaystyle 2+\sum_{n=3}^\infty 2(0.7)^n=\sum_{n=0}^\infty 2(0.7)^n\text{.}\)
Noticing that \(\displaystyle 2n+\sum_{n=3}^\infty 2(0.7)^n=\sum_{n=0}^\infty 2(0.7)^n\text{.}\)
Noticing that \(\displaystyle 2(0.7)^0+2(0.7)^1+2(0.7)^2+\sum_{n=3}^\infty 2(0.7)^n=\sum_{n=0}^\infty 2(0.7)^n\text{.}\)
Noticing that \(\displaystyle 0+1+2+\sum_{n=3}^\infty 2(0.7)^n=\sum_{n=0}^\infty 2(0.7)^n\text{.}\)
(b)
Using your chosen approach, determine if \(\displaystyle\sum_{n=3}^\infty 2(0.7)^n\) converges, and if so, to what it converges.
Example 8.4.5.
Given a series that appears to be mostly geometric:
we can rewrite it as the sum of a standard geometric series with some modification: \(\displaystyle ???+\sum_{n=0}^\infty a\cdot r^n\text{:}\)
which converges if and only if \(\displaystyle \sum_{n=0}^\infty (1.1)^n\) converges. In this case, it does not.
Activity 8.4.6.
For each of the following modified geometric series, rewrite them in the form \(???+\displaystyle\sum_{n=0}^\infty a\cdot r^n\text{.}\)
\(\displaystyle -7+\left( -\frac{3}{7}\right)^2+\left( -\frac{3}{7}\right)^3+\cdots\text{.}\)
\(-6+\left(\frac{5}{4}\right)^3+\left(\frac{5}{4}\right)^4+\cdots\text{.}\)
\(\displaystyle 4+\sum_{n=4}^\infty \left(\frac{2}{3}\right)^n\text{.}\)
\(8-1+1-1+1-1+\cdots\text{.}\)
Activity 8.4.7.
Use your rewritten forms from Activity 8.4.6 to determine which of the modified geometric series converge. If the series converges, find to what value it converges.
\(\displaystyle -7+\left( -\frac{3}{7}\right)^2+\left( -\frac{3}{7}\right)^3+\cdots\text{.}\)
\(-6+\left(\frac{5}{4}\right)^3+\left(\frac{5}{4}\right)^4+\cdots\text{.}\)
\(\displaystyle 4+\sum_{n=4}^\infty \left(\frac{2}{3}\right)^n\text{.}\)
\(8-1+1-1+1-1+\cdots\text{.}\)
Activity 8.4.8.
Find the limit of the following series.