Skip to main content

Section 5.6 Partial fractions (TI6)

Activity 5.6.1.

Using the method of substitution, which of these is the integral of 1(ax+b)dx?

  1. 1aln(ax+b)+C

  2. 1aln|ax+b|+C

  3. 1x(ln(ax)+ln(b))+C

  4. 1a(ln|ax|+ln|b|)+C

Activity 5.6.2.

Which of the following is equivalent to the rational expression 3x+32x2+3x?

  1. 32x+1x

  2. 3x+32x+3

  3. 1x+12x+3

  4. 32x2+1

Activity 5.6.3.

Based on your choice in Activity 5.6.2, which of these is the integral for 3x+32x2+3xdx?

  1. 32ln|x|+ln|x|+C

  2. ln|x|+12ln|2x+3|+C

  3. 32x1+x+C

  4. 3ln|x|+32ln|2x+3|+C

Activity 5.6.4.

Which of the following is an antiderivative for 1(x+k)2+h2?

  1. arctan(x)

  2. arctan(x+k)

  3. 1harctan(x+hh)

  4. 1h2arctan(x+kh2)

  5. 1harctan(x+kh)

Activity 5.6.5.

Consider the irreducible quadratic x24x+80. Which of the following is the completed square form of this quadratic expression?

  1. (x4)2+80

  2. (x2)2+80

  3. (x4)2+64

  4. (x2)2+76

  5. (x4)2+76

Activity 5.6.6.

Using the fact that 1x28x+80dx=1(x4)2+64dx, evaluate the integral 1x28x+80dx.

Activity 5.6.7.

Suppose that one could write 4x25x2x2(x2)=Ax+Bx2+Cx2.

Recall that:

4x25x2x2(x2)=Ax+Bx2+Cx2=Ax(x2)+B(x2)+Cx2x2(x2)4x25x2x2(x2)=Ax(x2)+B(x2)+Cx2x2(x2)4x25x2=Ax(x2)+B(x2)+Cx2.

What are the values of A,B and C?

  1. A=4,B=5,C=2

  2. A=3,B=1,C=1

  3. A=1,B=1,C=1

  4. A=1,B=3,C=1

  5. A=2,B=1,C=1

Activity 5.6.9.

Which of the following is the form of the partial fraction decomposition of x37x27x+15x3(x+5)?

  1. Ax+Bx+5

  2. Ax3+Bx+5

  3. Ax+Bx2+Cx3+Dx+5

  4. Ax+Bx2+Cx3+Dx+Ex+5

Activity 5.6.10.

Which of the following is the form of the partial fraction decomposition of x2+1(x3)2(x2+4)2?

  1. Ax3+B(x3)2+Cx2+4+D(x2+4)2

  2. Ax3+B(x3)2+Cx+D(x2+4)2

  3. Ax3+B(x3)2+Cx2+4+Dx+E(x2+4)2

  4. Ax3+B(x3)2+Cx+Dx2+4+Ex+F(x2+4)2

Activity 5.6.11.

Consider that the partial decomposition of x2+5x+3(x+1)2x is

x2+5x+3(x+1)2x=Ax+1+B(x+1)2+Cx.

What equality do we obtain if we multiply both sides of the above equation by (x+1)2x?

  1. x2+5x+3=Ax(x+1)+Bx+C(x+1)2

  2. x2+5x+3=A(x+1)+B(x+1)2+Cx

  3. x2+5x+3=Ax(x+1)+Bx+C(x+1)

  4. x2+5x+3=A(x+1)+Bx+Cx2

  5. x2+5x+3=Ax(x+1)+Bx2+C(x+1)2

Activity 5.6.12.

Notice that x2+5x+3=Ax(x+1)+Bx+C(x+1)2.

(a)

Which of the following values can we determine by setting x=0? Select all that apply.

  1. A

  2. B

  3. C

(b)

Which of the following values can we determine by setting x=1? Select all that apply.

  1. A

  2. B

  3. C

Activity 5.6.13.

Rewrite Ax(x+1)+x+3(x+1)2 so that Ax(x+1)+x+3(x+1)2=?x2+?x+?. Knowing that

1x2+5x+3=Ax(x+1)+x+3(x+1)2=?x2+?x+?,

can we solve for A?

Activity 5.6.14.

By using the form of the decomposition x2+5x+3(x+1)2x=Ax+1+B(x+1)2+Cx and the coefficients found in Activity 5.6.12 and Activity 5.6.13, evaluate x2+5x+3(x+1)2xdx.

Activity 5.6.15.

Given that x37x27x+15x3(x+5)=Ax+Bx2+Cx3+Dx+5, what are A,B,C, and D?

  1. A=1,B=7C=7,D=15

  2. A=1,B=2,C=3,D=2

  3. A=1,B=2,C=3,D=2

  4. A=1,B=2,C=3,D=2

Activity 5.6.17.

Consider the rational expression 2x3+2x+4x4+2x3+4x2. Which of the following is the partial fraction decomposition of this rational expression?

  1. 1x+1x2+2x1x2+2x+4

  2. 2x+0x2+1x2+2x+4

  3. 0x+1x2+1x2+2x+4

  4. 0x+1x2+2x1x2+2x+4

Activity 5.6.19.

Given that 2x+5x2+3x+2=1x+2+3x+1, find 032x+5x2+3x+2dx.

Remark 5.6.20.

This is all well and good, but given a rational function, how might one actually find coefficients for the partial fractions if we weren't given them?

Activity 5.6.21.

Evaluate 4x23x+1(2x+1)(x+2)(x3)dx.

Subsection 5.6.1 Videos

Figure 80. Video: I can integrate functions using the method of partial fractions