Skip to main content

Section 5.6 Partial fractions (TI6)

Activity 5.6.1.

Using the method of substitution, which of these is the integral of \(\displaystyle\int \frac{1}{(ax+b)} dx\text{?}\)

  1. \(\displaystyle \frac{1}{a}\ln(ax+b) +C\)

  2. \(\displaystyle \frac{1}{a}\ln|ax+b| +C\)

  3. \(\displaystyle \frac{1}{x}(\ln(ax)+\ln(b))+C\)

  4. \(\displaystyle \frac{1}{a}(\ln|ax|+\ln|b|)+C\)

Activity 5.6.2.

Which of the following is equivalent to the rational expression \(\displaystyle\frac{3x+3}{2x^2+3x}\text{?}\)

  1. \(\displaystyle \frac{3}{2x}+\frac{1}{x}\)

  2. \(\displaystyle \frac{3}{x}+\frac{3}{2x+3}\)

  3. \(\displaystyle \frac{1}{x}+\frac{1}{2x+3}\)

  4. \(\displaystyle \frac{3}{2x^2}+1\)

Activity 5.6.3.

Based on your choice in Activity 5.6.2, which of these is the integral for \(\displaystyle\int \frac{3x+3}{2x^2+3x} dx\text{?}\)

  1. \(\displaystyle \frac{3}{2}\ln|x|+\ln|x|+C\)

  2. \(\displaystyle \ln|x|+\frac{1}{2}\ln|2x+3|+C\)

  3. \(\displaystyle -\frac{3}{2}x^{-1}+x+C\)

  4. \(\displaystyle 3\ln|x|+\frac{3}{2}\ln|2x+3|+C\)

Activity 5.6.4.

Which of the following is an antiderivative for \(\displaystyle\frac{1}{(x+k)^2+h^2}\text{?}\)

  1. \(\displaystyle \arctan(x)\)

  2. \(\displaystyle \arctan(x+k)\)

  3. \(\displaystyle \frac{1}{h}\arctan\left(\frac{x+h}{h}\right)\)

  4. \(\displaystyle \frac{1}{h^2}\arctan\left(\frac{x+k}{h^2}\right)\)

  5. \(\displaystyle \frac{1}{h}\arctan\left(\frac{x+k}{h}\right)\)

Activity 5.6.5.

Consider the irreducible quadratic \(x^2-4x+80\text{.}\) Which of the following is the completed square form of this quadratic expression?

  1. \(\displaystyle (x-4)^2+80\)

  2. \(\displaystyle (x-2)^2+80\)

  3. \(\displaystyle (x-4)^2+64\)

  4. \(\displaystyle (x-2)^2+76\)

  5. \(\displaystyle (x-4)^2+76\)

Activity 5.6.6.

Using the fact that \(\displaystyle\int \frac{1}{x^2-8x+80} dx = \int \frac{1}{(x-4)^2+64} dx\text{,}\) evaluate the integral \(\displaystyle \int \frac{1}{x^2-8x+80} dx\text{.}\)

Activity 5.6.7.

Suppose that one could write \(\displaystyle\frac{4x^2-5x-2}{x^2(x-2)} =\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x-2}\text{.}\)

Recall that:

\begin{align*} \displaystyle\frac{4x^2-5x-2}{x^2(x-2)}&=\displaystyle \frac{A}{x}+\frac{B}{x^2}+\frac{C}{x-2} = \frac{Ax(x-2)+B(x-2)+Cx^2}{x^2(x-2)}\\ \displaystyle\frac{4x^2-5x-2}{x^2(x-2)}& = \frac{Ax(x-2)+B(x-2)+Cx^2}{x^2(x-2)}\\ 4x^2-5x-2& = Ax(x-2)+B(x-2)+Cx^2. \end{align*}

What are the values of \(A, B\) and \(C\text{?}\)

  1. \(\displaystyle A=4, B=-5, C=-2\)

  2. \(\displaystyle A=3, B=1, C=1\)

  3. \(\displaystyle A=1, B=1, C=1\)

  4. \(\displaystyle A=1, B=3, C=-1\)

  5. \(\displaystyle A=2, B=1, C=1\)

Activity 5.6.9.

Which of the following is the form of the partial fraction decomposition of \(\displaystyle\frac{x^3-7x^2-7x+15}{x^3(x+5)}\text{?}\)

  1. \(\displaystyle \frac{A}{x}+\frac{B}{x+5}\)

  2. \(\displaystyle \frac{A}{x^3}+\frac{B}{x+5}\)

  3. \(\displaystyle \frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{D}{x+5}\)

  4. \(\displaystyle \frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{Dx+E}{x+5}\)

Activity 5.6.10.

Which of the following is the form of the partial fraction decomposition of \(\displaystyle\frac{x^2+1}{(x-3)^2(x^2+4)^2}\text{?}\)

  1. \(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x^2+4}+\frac{D}{(x^2+4)^2}\)

  2. \(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{Cx+D}{(x^2+4)^2}\)

  3. \(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x^2+4}+\frac{Dx+E}{(x^2+4)^2}\)

  4. \(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{Cx+D}{x^2+4}+\frac{Ex+F}{(x^2+4)^2}\)

Activity 5.6.11.

Consider that the partial decomposition of \(\displaystyle \frac{x^2+5x+3}{(x+1)^2x}\) is

\begin{equation*} \displaystyle \frac{x^2+5x+3}{(x+1)^2x}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x}. \end{equation*}

What equality do we obtain if we multiply both sides of the above equation by \((x+1)^2x\text{?}\)

  1. \(\displaystyle x^2+5x+3=Ax(x+1)+Bx+C(x+1)^2\)

  2. \(\displaystyle x^2+5x+3=A(x+1)+B(x+1)^2+Cx\)

  3. \(\displaystyle x^2+5x+3=Ax(x+1)+Bx+C(x+1)\)

  4. \(\displaystyle x^2+5x+3=A(x+1)+Bx+Cx^2\)

  5. \(\displaystyle x^2+5x+3=Ax(x+1)+Bx^2+C(x+1)^2\)

Activity 5.6.12.

Notice that \(x^2+5x+3=Ax(x+1)+Bx+C(x+1)^2\text{.}\)

(a)

Which of the following values can we determine by setting \(x=0\text{?}\) Select all that apply.

  1. \(\displaystyle A\)

  2. \(\displaystyle B\)

  3. \(\displaystyle C\)

(b)

Which of the following values can we determine by setting \(x=-1\text{?}\) Select all that apply.

  1. \(\displaystyle A\)

  2. \(\displaystyle B\)

  3. \(\displaystyle C\)

Activity 5.6.13.

Rewrite \(Ax(x+1)+x+3(x+1)^2\) so that \(Ax(x+1)+x+3(x+1)^2=?x^2+?x+?\text{.}\) Knowing that

\begin{equation*} 1x^2+5x+3=Ax(x+1)+x+3(x+1)^2=?x^2+?x+?, \end{equation*}

can we solve for \(A\text{?}\)

Activity 5.6.14.

By using the form of the decomposition \(\displaystyle \frac{x^2+5x+3}{(x+1)^2x}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x}\) and the coefficients found in Activity 5.6.12 and Activity 5.6.13, evaluate \(\displaystyle \int \frac{x^2+5x+3}{(x+1)^2x} dx\text{.}\)

Activity 5.6.15.

Given that \(\displaystyle\frac{x^3-7x^2-7x+15}{x^3(x+5)}=\frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{D}{x+5}\text{,}\) what are \(A, B, C\text{,}\) and \(D\text{?}\)

  1. \(\displaystyle A=1, B=-7 C=-7, D=15\)

  2. \(\displaystyle A=-1, B=-2, C=3, D=2\)

  3. \(\displaystyle A=1, B=-2, C=-3, D=2\)

  4. \(\displaystyle A=-1, B=2, C=3, D=-2\)

Activity 5.6.16.

Given your choice in Activity 5.6.15 Find \(\displaystyle\int \frac{x^3-7x^2-7x+15}{x^3(x+5)} dx.\)

Activity 5.6.17.

Consider the rational expression \(\displaystyle\frac{2x^3+2x+4}{x^4+2x^3+4x^2}.\) Which of the following is the partial fraction decomposition of this rational expression?

  1. \(\displaystyle \frac{1}{x}+\frac{1}{x^2}+\frac{2x-1}{x^2+2x+4}\)

  2. \(\displaystyle \frac{2}{x}+\frac{0}{x^2}+\frac{-1}{x^2+2x+4}\)

  3. \(\displaystyle \frac{0}{x}+\frac{1}{x^2}+\frac{-1}{x^2+2x+4}\)

  4. \(\displaystyle \frac{0}{x}+\frac{1}{x^2}+\frac{2x-1}{x^2+2x+4}\)

Activity 5.6.18.

Given your choice in Activity 5.6.17 Find \(\displaystyle\int \frac{2x^3+2x+4}{x^4+2x^3+4x^2} dx\text{.}\)

Activity 5.6.19.

Given that \(\displaystyle \frac{2x+5}{x^2+3x+2}=\frac{-1}{x+2}+\frac{3}{x+1}\text{,}\) find \(\displaystyle\int_0^3 \frac{2x+5}{x^2+3x+2} dx\text{.}\)

Remark 5.6.20.

This is all well and good, but given a rational function, how might one actually find coefficients for the partial fractions if we weren't given them?

Activity 5.6.21.

Evaluate \(\displaystyle \int \frac{4x^2-3x+1}{(2x+1)(x+2)(x-3)}dx\text{.}\)

Subsection 5.6.1 Videos

Figure 80. Video: I can integrate functions using the method of partial fractions